Avez-vous déjà eu du mal à calculer la bonne surépaisseur de pliage pour vos projets de tôlerie ? Dans cet article de blog, nous allons plonger dans le monde des surépaisseurs de pliage et explorer comment utiliser un calculateur de surépaisseur de pliage pour rationaliser votre flux de travail. En tant qu'ingénieur mécanicien expérimenté, je partagerai mes idées et expliquerai les concepts qui sous-tendent cet outil pratique. Préparez-vous à apprendre comment réaliser des pliages précis et gagner du temps sur votre prochain projet !
La surépaisseur de pliage est un concept fondamental dans la fabrication des tôles, essentiel pour obtenir des dimensions précises dans les pièces métalliques pliées. Elle tient compte de l'allongement du matériau qui se produit au cours du processus de pliage, garantissant que les dimensions finales de la pièce correspondent aux spécifications de la conception.
La surépaisseur de pliage correspond à la longueur de l'axe neutre entre le début et la fin du pliage. L'axe neutre est une ligne imaginaire à l'intérieur du matériau qui ne subit ni compression ni allongement pendant le pliage. Ce calcul est essentiel pour déterminer la disposition du motif plat d'une pièce de tôle, car il tient compte de la déformation du matériau lorsqu'il est plié.
Le calcul précis de la surépaisseur de pliage est essentiel pour plusieurs raisons. Tout d'abord, il permet de s'assurer que les dimensions finales de la pièce pliée correspondent aux spécifications de la conception. En outre, il permet de minimiser le gaspillage de matériau en prédisant avec précision la quantité de matériau nécessaire. Cette réduction des déchets permet de réaliser des économies dans le processus de fabrication en réduisant le risque d'erreurs et de retouches.
Plusieurs facteurs influencent la surépaisseur de pliage. L'épaisseur du matériau (T) joue un rôle important, car les matériaux plus épais ont des caractéristiques de pliage différentes de celles des matériaux plus minces. L'angle de pliage (θ), généralement mesuré comme l'angle complémentaire, affecte l'étirement du matériau. Le rayon intérieur (r) de la courbure à l'intérieur du matériau a également une incidence sur le calcul. Enfin, le facteur K (K), une constante spécifique au matériau représentant le rapport entre l'épaisseur du matériau et l'axe neutre, est crucial.
La marge de pliage peut être calculée à l'aide de la formule suivante :
Où ?
Considérons une pièce en tôle ayant les propriétés suivantes :
En utilisant la formule de la marge de pliage :
Ce calcul fournit la marge de pliage nécessaire pour développer avec précision le modèle plat de la pièce de tôle.
Pour les nouveaux presse plieuse Pour les opérateurs qui ne sont pas familiarisés avec les subtilités du calcul de la surépaisseur de pliage, une calculatrice de surépaisseur de pliage peut s'avérer un outil inestimable. Ce calculateur simplifie le processus, garantit des résultats précis et rend le travail quotidien plus efficace.
Les calculateurs de surépaisseur de pliage en ligne simplifient le processus en permettant aux utilisateurs de saisir des paramètres tels que l'épaisseur du matériau, l'angle de pliage, le rayon intérieur et le facteur K. Ces calculateurs calculent ensuite la surépaisseur de pliage et parfois la déduction de pliage. Ces calculateurs calculent ensuite la surépaisseur de pliage et parfois la déduction de pliage, garantissant ainsi une fabrication précise de la tôle. En utilisant ces outils, les fabricants peuvent gagner du temps et réduire le risque d'erreurs dans leurs calculs.
Pour utiliser efficacement le calculateur de l'indemnité de pliage, les opérateurs doivent saisir les paramètres suivants :
Calculatrice associée :
Pour en savoir plus :
La surépaisseur de pliage est la longueur de matériau supplémentaire requise lors du pliage de la tôle pour obtenir les dimensions finales souhaitées après le formage. Elle compense l'étirement et la compression qui se produisent dans le matériau au cours du processus de pliage. La surépaisseur de pliage varie en fonction de plusieurs facteurs :
Les valeurs de surépaisseur de pliage sont généralement déterminées par une combinaison de données empiriques, de calculs mathématiques et d'expérience pratique. Des concepteurs et des ingénieurs expérimentés en tôlerie ont mis au point des tableaux et des formules de surépaisseur de pliage après des années d'essais et de vérifications répétés.
En utilisant la formule de surépaisseur de pliage appropriée ou en se référant à des tableaux de surépaisseur de pliage fiables, les concepteurs peuvent calculer avec précision les dimensions du modèle plat d'une pièce de tôlerie qui produira les dimensions de pliage finales souhaitées. Cela est essentiel pour créer des modèles plats précis et garantir que la pièce pliée s'adapte et fonctionne comme prévu.
Les calculs de la surépaisseur de pliage et de la déduction de pliage sont des méthodes essentielles utilisées pour déterminer la longueur des matériaux bruts en tôle dans leur forme plate, afin de garantir que la taille souhaitée de la pièce pliée est atteinte. La compréhension de ces calculs est cruciale pour la précision de la fabrication des tôles.
Méthode de calcul de la tolérance au pliage:
La marge de pliage (BA) est la quantité de matériau ajoutée à la longueur totale de la tôle plate pour tenir compte du matériau qui sera utilisé dans le pliage.
L'équation suivante permet de déterminer la longueur totale d'aplatissement lorsque la valeur de la surépaisseur de pliage est utilisée :
Lt = A + B + BA
Où ?
Méthode de calcul de la déduction de la courbure:
La déduction pour pliage (BD) est la quantité de matériau qui est soustraite de la longueur totale de la tôle plate pour tenir compte du matériau qui sera utilisé dans le pliage.
L'équation suivante permet de déterminer la longueur totale d'aplatissement lors de l'utilisation de la valeur de déduction de la courbure :
Lt = A + B - BD
Où ?
Outre les méthodes de déduction et de surépaisseur de pliage, d'autres techniques peuvent être utilisées pour déterminer la longueur à plat des matériaux bruts en tôle. Il s'agit notamment des techniques suivantes
Matériau | Épaisseur | Angle de flexion | V ouverture | Rayon intérieur | Indemnité de coude |
---|---|---|---|---|---|
SPCC | 0.5 | 90 | V4 | 0.5 | 0.95 |
100 | 0.73 | ||||
135 | 0.3 | ||||
175 | 0.03 | ||||
SPCC | 0.5 | 90 | V5 | 0.5 | 1.03 |
100 | 0.79 | ||||
135 | 0.33 | ||||
175 | 0.03 | ||||
SPCC | 0.5 | 90 | V6 | 0.5 | 1.1 |
100 | 0.85 | ||||
135 | 0.35 | ||||
175 | 0.03 | ||||
SPCC | 0.6 | 90 | V4 | 0.5 | 1.08 |
100 | 0.83 | ||||
135 | 0.35 | ||||
175 | 0.03 | ||||
SPCC | 0.6 | 90 | V5 | 0.5 | 1.15 |
100 | 0.89 | ||||
135 | 0.37 | ||||
175 | 0.03 | ||||
SPCC | 0.6 | 90 | V6 | 0.5 | 1.23 |
100 | 0.95 | ||||
135 | 0.39 | ||||
175 | 0.03 | ||||
SPCC | 0.8 | 90 | V6 | 0.5 | 1.49 |
120 | 0.73 | ||||
135 | 0.47 | ||||
150 | 0.25 | ||||
SPCC | 0.8 | 90 | V8 | 0 | 1.64 |
120 | 0.81 | ||||
135 | 0.52 | ||||
150 | 0.27 | ||||
SPCC | 0.8 | 90 | V10 | 0 | 1.79 |
120 | 0.88 | ||||
135 | 0.57 | ||||
150 | 0.3 | ||||
SPCC | 1 | 90 | V10 | 0 | 2.05 |
100 | 1.58 | ||||
120 | 1.01 | ||||
135 | 0.62 | ||||
175 | 0.06 | ||||
SPCC | 1 | 90 | V8 | 0 | 1.9 |
100 | 1.47 | ||||
120 | 0.93 | ||||
135 | 0.6 | ||||
175 | 0.05 | ||||
SPCC | 1 | 90 | V6 | 0 | 1.74 |
100 | 1.35 | ||||
120 | 0.86 | ||||
135 | 0.56 | ||||
175 | 0.05 | ||||
SPCC | 1.2 | 90 | V10 | 1.4 | 2.31 |
100 | 1.78 | ||||
120 | 1.13 | ||||
135 | 0.73 | ||||
175 | 0.06 | ||||
SPCC | 1.2 | 90 | V8 | 1.4 | 2.15 |
100 | 1.66 | ||||
120 | 1.06 | ||||
135 | 0.69 | ||||
175 | 0.06 | ||||
SPCC | 1.2 | 90 | V6 | 1.4 | 2 |
100 | 1.55 | ||||
120 | 0.98 | ||||
135 | 0.64 | ||||
175 | 0.05 | ||||
SPCC | 1.5 | 90 | V6 | 1.7 | 2.36 |
100 | 1.82 | ||||
120 | 1.16 | ||||
135 | 0.75 | ||||
175 | 0.06 | ||||
SPCC | 1.5 | 90 | V12 | 1.7 | 2.8 |
100 | 2.17 | ||||
120 | 1.38 | ||||
135 | 0.89 | ||||
175 | 0.08 | ||||
SPCC | 1.5 | 90 | V10 | 1.7 | 2.65 |
100 | 2.05 | ||||
120 | 1.31 | ||||
135 | 0.85 | ||||
175 | 0.07 | ||||
SPCC | 1.5 | 90 | V8 | 1.7 | 2.5 |
100 | 1.94 | ||||
120 | 1.23 | ||||
135 | 0.8 | ||||
175 | 0.07 | ||||
SPCC | 2 | 90 | V10 | 2 | 3.29 |
100 | 2.54 | ||||
120 | 1.62 | ||||
135 | 1.05 | ||||
175 | 0.09 | ||||
SPCC | 2 | 90 | V12 | 2 | 3.44 |
100 | 2.66 | ||||
120 | 1.69 | ||||
135 | 1.1 | ||||
175 | 0.09 | ||||
SPCC | 2.5 | 90 | V18 | 3.03 | 4.6 |
100 | 3.56 | ||||
120 | 2.26 | ||||
135 | 1.47 | ||||
175 | 0.12 | ||||
SPCC | 2.5 | 90 | V12 | 3.03 | 4.15 |
100 | 3.21 | ||||
120 | 2.04 | ||||
135 | 1.32 | ||||
175 | 0.11 | ||||
SPCC | 2.5 | 90 | V10 | 3.03 | 4 |
100 | 3.09 | ||||
120 | 1.97 | ||||
135 | 1.28 | ||||
175 | 0.11 | ||||
SPCC | 3 | 90 | V18 | 3.133.13 | 5.22 |
100 | 4.03 | ||||
120 | 2.57 | ||||
135 | 1.66 | ||||
175 | 0.14 | ||||
SPCC | 3 | 90 | V12 | 3.13 | 4.78 |
100 | 3.69 | ||||
120 | 2.35 | ||||
135 | 1.52 | ||||
175 | 0.13 | ||||
SPCC | 3 | 90 | V10 | 3.13 | 4.63 |
100 | 3.58 | ||||
120 | 2.28 | ||||
135 | 1.48 | ||||
175 | 0.13 |
Matériau | Épaisseur | Angle de flexion | V ouverture | Rayon intérieur | Indemnité de coude |
---|---|---|---|---|---|
SUS | 0.5 | 90 | 4 | 0.6 | 1.04 |
100 | 0.79 | ||||
120 | 0.48 | ||||
135 | 0.3 | ||||
175 | 0.04 | ||||
SUS | 0.5 | 90 | 5 | 0.6 | 1.15 |
100 | 0.88 | ||||
120 | 0.54 | ||||
135 | 0.33 | ||||
175 | 0.04 | ||||
SUS | 0.5 | 90 | 6 | 0.6 | 1.27 |
100 | 1.13 | ||||
120 | 0.59 | ||||
135 | 0.37 | ||||
175 | 0.04 | ||||
SUS | 0.6 | 90 | 4 | 0.6 | 1.16 |
100 | 0.88 | ||||
120 | 0.54 | ||||
135 | 0.34 | ||||
175 | 0.04 | ||||
SUS | 0.6 | 90 | 5 | 0.6 | 1.27 |
100 | 0.97 | ||||
120 | 0.59 | ||||
135 | 0.37 | ||||
175 | 0.04 | ||||
SUS | 0.6 | 90 | 6 | 0.6 | 1.38 |
100 | 1.05 | ||||
120 | 0.64 | ||||
135 | 0.4 | ||||
175 | 0.05 | ||||
SUS | 0.8 | 90 | 4 | 1.1 | 1.4 |
100 | 1.06 | ||||
120 | 0.65 | ||||
135 | 0.4 | ||||
175 | 0.05 | ||||
SUS | 0.8 | 90 | 5 | 1.1 | 1.51 |
100 | 1.15 | ||||
120 | 0.7 | ||||
135 | 0.44 | ||||
175 | 0.05 | ||||
SUS | 0.8 | 90 | 6 | 1.1 | 1.62 |
100 | 1.23 | ||||
120 | 0.75 | ||||
135 | 0.47 | ||||
175 | 0.06 | ||||
SUS | 1 | 90 | 6 | 1.9 | 1.87 |
100 | 1.42 | ||||
120 | 0.87 | ||||
135 | 0.54 | ||||
175 | 0.07 | ||||
SUS | 1 | 90 | 8 | 1.9 | 2.1 |
100 | 1.6 | ||||
120 | 0.98 | ||||
135 | 0.61 | ||||
175 | 0.07 | ||||
SUS | 1.2 | 90 | 6 | 1.6 | 2.1 |
100 | 1.59 | ||||
120 | 0.97 | ||||
135 | 0.61 | ||||
175 | 0.07 | ||||
SUS | 1.2 | 90 | 8 | 1.6 | 2.32 |
100 | 1.76 | ||||
120 | 1.08 | ||||
135 | 0.67 | ||||
175 | 0.08 | ||||
SUS | 1.2 | 90 | 10 | 1.6 | 2.54 |
100 | 1.93 | ||||
120 | 1.18 | ||||
135 | 0.74 | ||||
175 | 0.09 | ||||
SUS | 1.5 | 90 | 8 | 2.1 | 2.68 |
100 | 2.03 | ||||
120 | 1.24 | ||||
135 | 0.77 | ||||
175 | 0.09 | ||||
SUS | 1.5 | 90 | 10 | 2.1 | 2.9 |
100 | 2.2 | ||||
120 | 1.35 | ||||
135 | 0.84 | ||||
175 | 0.1 | ||||
SUS | 2 | 90 | 10 | 3.49 | |
100 | 2.65 | ||||
120 | 1.62 | ||||
135 | 1.01 | ||||
175 | 0.12 | ||||
SUS | 2 | 90 | 12 | 3.7 | |
100 | 2.82 | ||||
120 | 1.72 | ||||
135 | 1.07 | ||||
175 | 0.13 |
Matériau | Épaisseur | Angle de flexion | V ouverture | Rayon intérieur | Indemnité de coude |
---|---|---|---|---|---|
SPHC | 1 | 90 | V10 | 1.86 | 2.05 |
100 | 1.58 | ||||
120 | 1.01 | ||||
135 | 0.62 | ||||
175 | 0.06 | ||||
SPHC | 1 | 90 | V8 | 1.86 | 1.9 |
100 | 1.47 | ||||
120 | 0.93 | ||||
135 | 0.6 | ||||
175 | 0.05 | ||||
SPHC | 1 | 90 | V6 | 1.86 | 1.74 |
100 | 1.35 | ||||
120 | 0.86 | ||||
135 | 0.56 | ||||
175 | 0.05 | ||||
SPHC | 1.2 | 90 | V10 | 1.44 | 2.31 |
100 | 1.78 | ||||
120 | 1.13 | ||||
135 | 0.73 | ||||
175 | 0.06 | ||||
SPHC | 1.2 | 90 | V8 | 1.44 | 2.15 |
100 | 1.66 | ||||
120 | 1.06 | ||||
135 | 0.69 | ||||
175 | 0.06 | ||||
SPHC | 1.2 | 90 | V6 | 1.44 | 2 |
100 | 1.55 | ||||
120 | 0.98 | ||||
135 | 0.64 | ||||
175 | 0.05 | ||||
SPHC | 1.5 | 90 | V12 | 1.74 | 2.8 |
100 | 2.17 | ||||
120 | 1.38 | ||||
135 | 0.89 | ||||
175 | 0.08 | ||||
SPHC | 1.5 | 90 | V10 | 1.74 | 2.65 |
100 | 2.05 | ||||
120 | 1.31 | ||||
135 | 0.85 | ||||
175 | 0.07 | ||||
SPHC | 1.5 | 90 | V8 | 1.74 | 2.5 |
100 | 1.94 | ||||
120 | 1.23 | ||||
135 | 0.8 | ||||
175 | 0.07 | ||||
SPHC | 2 | 90 | V12 | 2.01 | 3.44 |
100 | 2.66 | ||||
120 | 1.69 | ||||
135 | 1.1 | ||||
175 | 0.09 | ||||
SPHC | 2 | 90 | V10 | 2.01 | 3.29 |
100 | 2.54 | ||||
120 | 1.62 | ||||
135 | 1.05 | ||||
175 | 0.09 | ||||
SPHC | 2.5 | 90 | V18 | 3 | 4.6 |
100 | 3.25 | ||||
120 | 2.26 | ||||
135 | 1.47 | ||||
175 | 0.12 | ||||
SPHC | 2.5 | 90 | V12 | 3 | 4.15 |
100 | 3.21 | ||||
120 | 2.04 | ||||
135 | 1.32 | ||||
175 | 0.11 | ||||
SPHC | 2.5 | 90 | V10 | 3 | 4 |
100 | 3.09 | ||||
120 | 1.97 | ||||
135 | 1.28 | ||||
175 | 0.11 | ||||
SPHC | 3 | 90 | V18 | 3.1 | 5.22 |
100 | 4.03 | ||||
120 | 2.57 | ||||
135 | 1.66 | ||||
175 | 0.14 | ||||
SPHC | 3 | 90 | V12 | 3.1 | 4.78 |
100 | 3.69 | ||||
120 | 2.35 | ||||
135 | 1.52 | ||||
175 | 0.13 | ||||
SPHC | 3 | 90 | V10 | 3.1 | 4.63 |
100 | 3.58 | ||||
120 | 2.28 | ||||
135 | 1.48 | ||||
175 | 0.13 |
Matériau | Épaisseur | Angle de flexion | V ouverture | Rayon intérieur | Indemnité de coude |
---|---|---|---|---|---|
SECC | 1 | 90 | V10 | 1.9 | 2.05 |
100 | 1.58 | ||||
120 | 1.01 | ||||
135 | 0.62 | ||||
175 | 0.06 | ||||
SECC | 1 | 90 | V8 | 1.9 | 1.9 |
100 | 1.47 | ||||
120 | 0.93 | ||||
135 | 0.6 | ||||
175 | 0.05 | ||||
SECC | 1 | 90 | V6 | 1.9 | 1.74 |
100 | 1.35 | ||||
120 | 0.86 | ||||
135 | 0.56 | ||||
175 | 0.05 | ||||
SECC | 1.2 | 90 | V10 | 1.4 | 2.31 |
100 | 1.78 | ||||
120 | 1.13 | ||||
135 | 0.73 | ||||
175 | 0.06 | ||||
SECC | 1.2 | 90 | V8 | 1.4 | 2.15 |
100 | 1.66 | ||||
120 | 1.06 | ||||
135 | 0.69 | ||||
175 | 0.06 | ||||
SECC | 1.2 | 90 | V6 | 1.4 | 2 |
100 | 1.55 | ||||
120 | 0.98 | ||||
135 | 0.64 | ||||
175 | 0.05 | ||||
SECC | 1.5 | 90 | V12 | 1.7 | 2.8 |
100 | 2.17 | ||||
120 | 1.38 | ||||
135 | 0.89 | ||||
175 | 0.08 | ||||
SECC | 1.5 | 90 | V10 | 1.7 | 2.65 |
100 | 2.05 | ||||
120 | 1.31 | ||||
135 | 0.85 | ||||
175 | 0.07 | ||||
SECC | 1.5 | 90 | V8 | 1.7 | 2.5 |
100 | 1.94 | ||||
120 | 1.23 | ||||
135 | 0.8 | ||||
175 | 0.07 | ||||
SECC | 2 | 90 | V12 | 2 | 3.44 |
100 | 2.66 | ||||
120 | 1.69 | ||||
135 | 1.1 | ||||
175 | 0.09 | ||||
SECC | 2 | 90 | V10 | 2 | 3.29 |
100 | 2.54 | ||||
120 | 1.62 | ||||
135 | 1.05 | ||||
175 | 0.09 | ||||
SECC | 2.5 | 90 | V18 | 3.03 | 4.6 |
100 | 3.56 | ||||
120 | 2.26 | ||||
135 | 1.47 | ||||
175 | 0.12 | ||||
SECC | 2.5 | 90 | V12 | 3.03 | 4.15 |
100 | 3.21 | ||||
120 | 2.01 | ||||
135 | 1.32 | ||||
175 | 0.11 | ||||
SECC | 2.5 | 90 | V10 | 3.03 | 4 |
100 | 3.09 | ||||
120 | 1.97 | ||||
135 | 1.28 | ||||
175 | 0.11 | ||||
SECC | 3 | 90 | V18 | 3.13 | 5.22 |
100 | 4.03 | ||||
120 | 2.57 | ||||
135 | 1.66 | ||||
175 | 0.14 | ||||
SECC | 3 | 90 | V12 | 3.13 | 1.78 |
100 | 3.69 | ||||
120 | 2.35 | ||||
135 | 1.52 | ||||
175 | 0.13 | ||||
SECC | 3 | 90 | V10 | 3.13 | 4.63 |
100 | 3.58 | ||||
120 | 2.28 | ||||
135 | 1.48 | ||||
175 | 0.13 |
Matériau | Épaisseur | Angle de flexion | V ouverture | Rayon intérieur | Indemnité de coude |
---|---|---|---|---|---|
AL | 0.8 | 90 | 4 | 0.6 | 1.15 |
100 | 0.81 | ||||
120 | 0.5 | ||||
135 | 0.36 | ||||
175 | 0.03 | ||||
AL | 0.8 | 90 | 5 | 0.6 | 1.2 |
100 | 0.85 | ||||
120 | 0.52 | ||||
135 | 0.37 | ||||
175 | 0.03 | ||||
AL | 0.8 | 90 | 6 | 0.6 | 1.25 |
100 | 0.88 | ||||
120 | 0.54 | ||||
135 | 0.39 | ||||
175 | 0.03 | ||||
AL | 1 | 90 | 6 | 0.6 | 1.49 |
100 | 1.05 | ||||
120 | 6.5 | ||||
135 | 0.46 | ||||
175 | 0.04 | ||||
AL | 1 | 90 | 8 | 0.6 | 1.59 |
100 | 1.13 | ||||
120 | 0.69 | ||||
135 | 0.5 | ||||
175 | 0.04 | ||||
AL | 1.2 | 90 | 6 | 0.9 | 1.73 |
100 | 1.22 | ||||
120 | 0.75 | ||||
135 | 0.54 | ||||
175 | 0.04 | ||||
AL | 1.2 | 90 | 8 | 0.9 | 1.82 |
100 | 1.29 | ||||
120 | 0.79 | ||||
135 | 0.57 | ||||
175 | 0.05 | ||||
AL | 1.5 | 90 | 8 | 1.2 | 2.18 |
100 | 1.54 | ||||
120 | 0.95 | ||||
135 | 0.68 | ||||
175 | 0.06 | ||||
AL | 1.5 | 90 | 10 | 1.2 | 2.28 |
100 | 1.61 | ||||
120 | 0.99 | ||||
135 | 0.71 | ||||
175 | 0.06 | ||||
AL | 1.5 | 90 | 12 | 1.2 | 2.38 |
100 | 1.68 | ||||
120 | 1.03 | ||||
135 | 0.74 | ||||
175 | 0.06 | ||||
AL | 2 | 90 | 14 | 1.6 | 3.07 |
100 | 2.17 | ||||
120 | 1.3 | ||||
135 | 0.93 | ||||
175 | 0.08 | ||||
AL | 2 | 90 | 12 | 1.6 | 2.98 |
100 | 2.11 | ||||
120 | 1.34 | ||||
135 | 0.95 | ||||
175 | 0.08 | ||||
AL | 2 | 90 | 18 | 1.6 | 3.25 |
100 | 2.3 | ||||
120 | 1.42 | ||||
135 | 1.01 | ||||
175 | 0.08 | ||||
AL | 2.5 | 90 | 18 | 2.4 | 3.89 |
100 | 2.75 | ||||
120 | 1.7 | ||||
135 | 1.21 | ||||
175 | 0.1 | ||||
AL | 3 | 90 | 18 | 2.5 | 4.5 |
100 | 3.18 | ||||
120 | 1.96 | ||||
135 | 1.4 | ||||
175 | 0.1 | ||||
AL | 3.2 | 90 | 18 | 2.5 | 4.74 |
100 | 3.35 | ||||
120 | 2.06 | ||||
135 | 1.47 | ||||
175 | 0.12 | ||||
AL | 4 | 90 | 40 | 4.6 | 6.77 |
100 | 4.79 | ||||
120 | 2.95 | ||||
135 | 2.11 | ||||
175 | 0.17 | ||||
AL | 6.8 | 90 | 800 | 9.4 | 12.09 |
100 | 8.55 | ||||
120 | 5.27 | ||||
135 | 3.76 | ||||
175 | 0.31 |
Le facteur K est un coefficient crucial dans la fabrication des tôles, représentant la position relative de l'axe neutre dans l'épaisseur du matériau. L'axe neutre est le plan imaginaire à l'intérieur du matériau où aucune compression ou tension ne se produit pendant le processus de pliage. Le facteur K est calculé comme le rapport entre la distance entre la surface intérieure et l'axe neutre et l'épaisseur totale du matériau. Il est essentiel de comprendre le facteur K pour calculer avec précision la surépaisseur de pliage, ce qui garantit la précision des dimensions finales des pièces pliées.
Le facteur K influence directement la surépaisseur de pliage, qui est la longueur supplémentaire de matériau nécessaire pour accommoder le pli. La formule de la surépaisseur de pliage, qui comprend généralement l'angle de pliage, le rayon intérieur, l'épaisseur du matériau et le facteur K, est la suivante :
où ( BA ) est la surépaisseur de pliage, ( θ ) est l'angle de pliage en radians, ( r ) est le rayon intérieur, ( K ) est le facteur K et ( T ) est l'épaisseur du matériau. Cette formule met en évidence l'importance du facteur K pour garantir que la surépaisseur de pliage est calculée avec précision, ce qui est essentiel pour obtenir des dimensions de pièces précises et réduire le gaspillage de matériau.
Le facteur K n'est pas une valeur constante et varie en fonction de plusieurs facteurs, notamment les propriétés du matériau, la méthode de pliage, le rayon de courbure et l'angle de courbure. Des matériaux et des conditions de pliage différents se traduiront par des valeurs de facteur K différentes, généralement comprises entre 0,3 et 0,5. Par exemple, un matériau très ductile peut avoir un facteur K différent de celui d'un matériau plus fragile, ce qui influe sur la surépaisseur de pliage et, par conséquent, sur les dimensions finales de la pièce.
Pour calculer avec précision la marge de pliage et la déduction de pliage, il faut commencer par recueillir les paramètres suivants :
La surépaisseur de pliage tient compte de la longueur supplémentaire de matériau nécessaire à la réalisation du pliage. La formule de calcul de la surépaisseur de pliage permet de déterminer cette valeur :
1. Convertir l'angle de courbure en radian :
2. Appliquer la formule de tolérance au pliage :
Ensuite, il faut déterminer la marge de recul extérieure, qui est importante pour le calcul de la déduction pour flexion. La formule de calcul de l'OSSB est la suivante :
Convertir l'angle de courbure en radian :
Appliquer la formule de retrait extérieur :
Enfin, utilisez le retrait extérieur et la marge de pliage pour déterminer la déduction de pliage, qui est cruciale pour obtenir des dimensions précises dans la fabrication de tôles :
Appliquer la formule de déduction de la courbure :
Il est essentiel de comprendre l'importance de chaque paramètre pour réussir les opérations de pliage. Le facteur K, par exemple, influence la quantité de matériau nécessaire pour le pliage, tandis que la surépaisseur de pliage garantit que le matériau s'ajustera correctement après le pliage. En outre, il est essentiel de tenir compte du retour élastique, un phénomène par lequel le métal reprend légèrement sa forme initiale après le pliage, ce qui peut nécessiter un pliage excessif du matériau.
En suivant ces étapes et en examinant attentivement chaque paramètre, vous pouvez calculer avec précision la surépaisseur de pliage et la déduction de pliage nécessaires pour une fabrication précise de la tôle.