Comprendre la contrainte et le stress : La relation expliquée

Imaginez que vous vous trouviez sur un pont et que vous regardiez passer un poids lourd. Vous êtes-vous déjà demandé pourquoi le pont ne s'effondre pas sous le poids ? Cet article se penche sur les concepts de déformation et de contrainte, expliquant comment les matériaux se déforment sous l'effet d'une force et comment les ingénieurs calculent ces déformations pour garantir la sécurité. Vous apprendrez les relations fondamentales entre ces forces, comment elles sont mesurées et leurs implications pratiques dans les structures de tous les jours. Que vous soyez un ingénieur en herbe ou un simple curieux, ce guide vous éclairera sur les forces invisibles qui maintiennent notre monde intact.

Table des matières

1. Qu'est-ce que la déformation ? Qu'est-ce que la microdéformation ? Quelle est l'unité de déformation ?

Tout d'abord, la majorité des entreprises de contrôle de la sécurité mesurent la déformation de la structure testée. Une déformation trop importante peut provoquer des accidents.

Par exemple, les fissures dans les structures, l'enfoncement et le déplacement entre la structure et une référence fixe sont des déformations importantes visibles à l'œil nu, qui peuvent être mesurées en millimètres à l'aide de jauges telles que les jauges de fissures, les niveaux statiques et les jauges de déplacement.

Mais comment représenter la petite déformation causée par la compression à l'intérieur de la structure testée ou la flexion à l'extérieur de l'objet en forme de poutre ?

La réponse est la tension.

Supposons que la longueur d'une structure de longueur L subisse une déformation sous l'effet d'une contrainte et que sa longueur passe à L', alors sa variation de longueur ΔL = L' - L, et la déformation ε est le rapport entre la variation de longueur ΔL et la longueur originale L, la formule est la suivante :

Quelle est donc l'unité de contrainte ?

Comme le montre la formule, la déformation est un rapport et est sans dimension, c'est-à-dire qu'elle n'a pas d'unité.

Qu'est-ce que la microtension ?

Étant donné que ΔL est très petit, généralement de l'ordre du micron, la valeur de contrainte calculée est très petite, avec de nombreuses décimales, ce qui la rend peu pratique à afficher et à visualiser, de sorte que la notation scientifique 10-6 est introduite, appelée microcontrainte με, qui peut être comprise comme l'unité de microcontrainte est 10-6, et notre gamme de mesure de jauge de contrainte est de ±1500 microcontraintes, le positif indiquant l'étirement, et le négatif indiquant la compression.

2. Qu'est-ce que la contrainte ? Quelle est la relation entre la déformation et la contrainte ? Comment la déformation calcule-t-elle la contrainte ?

La déformation est une petite déformation à l'intérieur de la structure testée. Pourquoi se déforme-t-elle ? Parce qu'elle est soumise à une force extérieure.

Si l'on prend l'exemple d'une pile de pont, si un camion entièrement chargé roule sur le pont, la pile supportera une pression supplémentaire et produira une compression et une déformation par compression, tandis que la pile produira une force interne pour contrebalancer la force externe et surmonter la déformation.

Cette force interne est une contrainte. La contrainte est définie comme la force par unité de surface, qui est en fait une pression, avec des unités de MPa.

Quelle est donc la relation entre la variable de déformation et la variation de la contrainte subie ? Voir la formule de calcul :

Dans la formule, σ représente la contrainte, E le module d'élasticité du matériau testé, également connu sous le nom de module de Young, qui est une quantité physique décrivant l'élasticité du matériau.

Elle peut être considérée comme la capacité du matériau à résister à la déformation (rigidité) et, d'un point de vue microéconomique, il s'agit de la force de liaison entre les atomes et les molécules.

Deux matériaux ayant la même déformation (la même valeur de contrainte), le matériau ayant une plus grande résistance à la déformation (un module d'élasticité plus élevé) supportera une contrainte plus importante.

Par exemple, pour un tofu et un bloc de fer de même taille, si leur hauteur est réduite de 1 mm, il suffit de presser doucement le premier à la main, tandis que le second doit être aidé par un outil.

Le module d'élasticité des matériaux d'ingénierie courants est indiqué dans des tableaux. Par exemple, le module d'élasticité du béton C30 est de 30000MPa (1N/mm).2 = 1MPa), et le module d'élasticité de l'acier au carbone est de 206GPa.

Le module d'élasticité Ec du béton en compression et en traction doit être adopté conformément au tableau 4.1.5.

Le module de déformation en cisaillement Gc du béton peut être adopté à 40% de la valeur du module élastique correspondant.

Le coefficient de Poisson Vc du béton peut être fixé à 0,2.

Tableau4.15 Module d'élasticité du béton (×104N/mm2).

Classe de résistance du bétonC15C20C25C30C35C40C45C50C55C60C65C70C75C80
Ec2.202.552.803.003.153.253.353.453.553.603.653.703.753.80

Remarque :

1. Lorsque des données d'essai fiables sont disponibles, le module d'élasticité peut être déterminé sur la base des données mesurées ;

2. Lorsqu'une grande quantité d'adjuvants minéraux est ajoutée au béton, le module d'élasticité peut être déterminé sur la base des données réelles mesurées en fonction de l'âge spécifié.

Tableau 1.1-13 Module d'élasticité et coefficient de Poisson de matériaux couramment utilisés

ObjetModule d'élasticité
E/GPa
Module de cisaillement
G/GPa
Rapport de Poisson
μ
ObjetModule d'élasticité
E/GPa
Module de cisaillement
G/GPa
Téflon
Fonte grise118~12644.30.3Zinc laminé8231.40.27
Fonte nodulaire173 0.3Plomb166.80.42
Acier au carbone, acier au nickel-chrome20679.40.3Verre551.960.25
Acier allié   Verre organique2.35-29.42  
Acier moulé202 0.3Caoutchouc0.0078 0.47
Cuivre pur laminé10839.20.31-0.34Bakélite1.96-2.940.69-2.060.35-0.38
Cuivre pur étiré à froid12748.0 Sandwich plastique phénolique3.92-8.83  
Bronze phosphoreux étain laminé11341.20.32-0.35Celluloïd1.71-1.890.69-0.980.4
Laiton étiré à froid89-9734.3-36.30.32-0.42Nylon 10101.07  
Bronze au manganèse laminé10839.20.35Chlorure de polyvinyle non plastifié3.14-3.92 0.35-0.38
Aluminium laminé6825.5-26.50.32-0.36téflon1.14-1.42  
Fil d'aluminium tréfilé69  Polyéthylène basse pression0.54-0.75  
Aluminium moulé bronze10341.10.3Polyéthylène haute pression0.147-0.245  
Bronze étain coulé103 0.3béton13.73~39.2  
Alliage de duralumin7026.50.3  4.9-15.690.1-0.18

En effet, lorsque les contraintes internes ne peuvent être mesurées directement, elles peuvent être calculées en mesurant la déformation et en la multipliant par le module d'élasticité du matériau.

N'oubliez pas que le partage, c'est l'entraide ! : )
Shane
Auteur

Shane

Fondateur de MachineMFG

En tant que fondateur de MachineMFG, j'ai consacré plus d'une décennie de ma carrière à l'industrie métallurgique. Ma vaste expérience m'a permis de devenir un expert dans les domaines de la fabrication de tôles, de l'usinage, de l'ingénierie mécanique et des machines-outils pour les métaux. Je suis constamment en train de réfléchir, de lire et d'écrire sur ces sujets, m'efforçant constamment de rester à la pointe de mon domaine. Laissez mes connaissances et mon expertise être un atout pour votre entreprise.

Vous pouvez aussi aimer
Nous les avons sélectionnés pour vous. Poursuivez votre lecture et apprenez-en plus !

Mécanique des fractures 101 : comprendre les bases

Imaginez qu'un composant critique tombe en panne de manière inattendue, entraînant des conséquences catastrophiques. C'est là que la mécanique des fractures entre en jeu. Cet article explore les bases de la mécanique des fractures, en soulignant comment la compréhension des fissures...

Comprendre la limite d'élasticité : Un guide complet

La limite d'élasticité, une propriété cruciale mais souvent négligée, joue un rôle essentiel dans la sélection des matériaux. Dans cet article, nous allons nous pencher sur les principes fondamentaux de la limite d'élasticité et explorer son importance...

Comprendre les principes de la fixation des boulons

Vous êtes-vous déjà demandé ce qui fait tenir ensemble les machines du monde entier ? Les boulons sont les champions méconnus de l'ingénierie. Cet article explore le monde fascinant des boulons, de leurs types et spécifications...

Comprendre la rupture des boulons : Mécanismes et facteurs

Vous êtes-vous déjà demandé pourquoi les boulons se brisent et provoquent des pannes de machines ? Cet article explore les facteurs critiques à l'origine des ruptures de boulons, des défauts de conception aux problèmes de matériaux. Vous apprendrez comment...

Comprendre les essais de dureté : Un guide complet

Vous êtes-vous déjà demandé pourquoi les diamants sont si durs ? Dans cet article, nous allons explorer le monde fascinant de la dureté des matériaux, du talc au diamant. Vous apprendrez comment différents tests, tels que Brinell, Rockwell,...

7 Les bases de la fatigue : Comprendre, prévenir et contrôler

Vous êtes-vous déjà demandé pourquoi les métaux se rompent même sous une contrainte apparemment faible ? Cet article explore le monde fascinant de la fatigue dans les matériaux, révélant comment les contraintes cycliques conduisent à des défaillances inattendues....
MachineMFG
Faites passer votre entreprise à la vitesse supérieure
S'abonner à la newsletter
Les dernières nouvelles, les articles et les ressources les plus récents, envoyés chaque semaine dans votre boîte aux lettres électronique.

Nous contacter

Nous vous répondrons dans les 24 heures.