Sheet Metal Unfold Size Calculation Made Easy

Ever wondered how engineers accurately determine the unfolded size of sheet metal? This process is crucial in manufacturing to ensure precise dimensions after bending. This article breaks down two main methods: the bending compensation and bend deduction algorithms. By understanding these techniques, you’ll gain insights into the science behind sheet metal fabrication and improve your design accuracy. Dive in to discover how you can master the art of calculating sheet metal unfold sizes efficiently.

How To Calculate Sheet Metal Unfold Size

Table Of Contents

For sheet metal bending and expansion, one side of the sheet will be elongated while the other side will be compressed. The factors that affect this process include the type of material, its thickness, heat treatment, and the bending angle.

calculation method of sheet metal bend expansion

To ensure the desired size of parts after the final bending process using a press brake, the design of sheet metal parts utilizes various algorithms to calculate the actual length of the sheet metal under the folding condition. One of the most widely used methods is the simple “pinch rule,” which is based on personal experience in the calculation.

However, with the advent and widespread use of computer technology, more people are turning to computer-aided design methods. In general, there are two popular algorithms for sheet metal bending that are widely adopted today. The first is based on the bending compensation algorithm, and the second is based on the bending deduction algorithm.

Bending compensation method

Hydraulic Crowning

The bending compensation algorithm calculates the expansion length (LT) of a part by adding the length of each section of the part after flattening and the length of the flattened bend area, which is referred to as the “bend compensation” value (BA). The formula for the length of the entire part is as follows: LT = D1 + D2 + BA.

The bending area is assumed to deform during the bending process. To determine the geometry of the unfolded parts, the following steps should be taken:

  • Cut the bend area from the bending part.
  • Lay the two remaining flat sections on a flat surface.
  • Calculate the length of the bend area after flattening.
  • Join the flattened bend area between the two flat sections to get the expanded parts.

Bend deduction method

Bend deduction refers to the amount of reverse bend and is a simple algorithm used to describe the sheet metal bending process.

According to this method, the flattening length (LT) of the part is equal to the sum of the length of the two theoretical flat sections extending to the “sharp point” (the imaginary intersection of the two flat sections) minus the bend deduction (BD) value.

Expand Calculation Principle:

  • During the bending process, the outer layer experiences tensile stress, while the inner layers experience compressive stress. There is a layer that is neither tensile nor compressive, which is called the neutral layer, and it undergoes a transition from tension to compression. The length of the neutral layer remains unchanged during the bending process and is the same as its length before bending, making it the basis for calculating the expansion length of the bending piece.
  • The location of the neutral layer is dependent on the degree of deformation.

When the bending radius is large and the bending angle is small, the degree of deformation is minimal, and the neutral layer is close to the center of the sheet’s thickness.

Conversely, when the bending radius decreases and the bending angle increases, the degree of deformation increases, and the position of the neutral layer gradually moves towards the inner part of the bending center.

The distance from the neutral layer to the inside of the sheet is represented by λ.

Basic Formula for Expansion Calculation:

Expansion length = inner layer + inner layer + compensation amount

Formula for Expansion Calculation
Don't forget, sharing is caring! : )
Shane
Author

Shane

Founder of MachineMFG

As the founder of MachineMFG, I have dedicated over a decade of my career to the metalworking industry. My extensive experience has allowed me to become an expert in the fields of sheet metal fabrication, machining, mechanical engineering, and machine tools for metals. I am constantly thinking, reading, and writing about these subjects, constantly striving to stay at the forefront of my field. Let my knowledge and expertise be an asset to your business.

You May Also Like
We picked them just for you. Keep reading and learn more!
Non-indentation-bending-technology-and-die-application

Mark-Free Sheet Metal Bending: Tips and Solutions

Imagine bending sheet metal without leaving a single mark or scratch. In this article, we explore innovative techniques for mark-free sheet metal bending, addressing challenges like friction, material hardness, and…

Closed Bending: Advanced Sheet Metal Methods

Ever thought bending sheet metal could be so intricate? Closed bending, a critical technique in sheet metal processing, uses specialized methods to achieve precise, durable bends without needing a professional…
Metal Mark Free Bending Solutions

4 Mark-Free Sheet Metal Bending Techniques

Imagine achieving perfect sheet metal bends without any marks or blemishes. This article dives into advanced techniques that ensure pristine surface quality in metal bending processes. You'll learn about innovative…
Sheet Metal Bending Calculator (Free to Use)

Sheet Metal Bending Calculator (Free to Use)

Have you ever wondered how different materials affect sheet metal bending? In this insightful article, a seasoned mechanical engineer shares their expertise on the impact of material types, thickness, and…
MachineMFG
Take your business to the next level
Subscribe to our newsletter
The latest news, articles, and resources, sent to your inbox weekly.
© 2024. All rights reserved.

Contact Us

You will get our reply within 24 hours.