
Avete mai avuto difficoltà a calcolare il giusto margine di piegatura per i vostri progetti di lamiera? In questo post ci immergeremo nel mondo dei margini di piegatura e scopriremo come utilizzare un calcolatore di margini di piegatura per ottimizzare il vostro flusso di lavoro. In qualità di ingegnere meccanico esperto, condividerò le mie intuizioni e spiegherò i concetti alla base di questo pratico strumento. Preparatevi a imparare come ottenere curve precise e risparmiare tempo nel vostro prossimo progetto!
La tolleranza di piegatura è un concetto fondamentale nella fabbricazione delle lamiere, essenziale per ottenere dimensioni precise nelle parti metalliche piegate. Tiene conto dell'allungamento del materiale che si verifica durante il processo di piegatura, garantendo che le dimensioni finali del pezzo corrispondano alle specifiche di progetto.
Il margine di piegatura si riferisce alla lunghezza dell'asse neutro dall'inizio alla fine della piegatura. L'asse neutro è una linea immaginaria all'interno del materiale che non subisce alcuna compressione o allungamento durante la piegatura. Questo calcolo è fondamentale per determinare il layout del modello piatto di un pezzo in lamiera, in quanto tiene conto della deformazione del materiale quando viene piegato.
Il calcolo accurato della tolleranza di piegatura è fondamentale per diversi motivi. Innanzitutto, garantisce che le dimensioni finali del pezzo piegato corrispondano alle specifiche di progetto. Inoltre, aiuta a ridurre al minimo gli sprechi di materiale, prevedendo con precisione la quantità di materiale necessario. Questa riduzione degli scarti porta a un risparmio sui costi del processo di produzione, riducendo il rischio di errori e di rilavorazioni.
Diversi fattori influenzano la tolleranza di piegatura. Lo spessore del materiale (T) gioca un ruolo importante, poiché i materiali più spessi hanno caratteristiche di piegatura diverse rispetto a quelli più sottili. L'angolo di piegatura (θ), tipicamente misurato come angolo complementare, influisce sull'allungamento del materiale. Anche il raggio interno (r) della curva all'interno del materiale influisce sul calcolo. Infine, il fattore K (K), una costante specifica del materiale che rappresenta il rapporto tra lo spessore del materiale e l'asse neutro, è fondamentale.
La tolleranza di curvatura può essere calcolata con la seguente formula:
Dove:
Consideriamo un pezzo di lamiera con le seguenti proprietà:
Utilizzando la formula del margine di curvatura:
Questo calcolo fornisce la tolleranza di piegatura necessaria per sviluppare con precisione il modello piatto del pezzo in lamiera.
Per i nuovi pressa piegatrice Gli operatori che non hanno familiarità con le complessità del calcolo del margine di curvatura, possono avvalersi di un calcolatore del margine di curvatura come strumento prezioso. Questo calcolatore semplifica il processo, garantendo risultati accurati e rendendo più efficiente il lavoro quotidiano.
I calcolatori online delle tolleranze di piegatura semplificano il processo consentendo agli utenti di inserire parametri quali lo spessore del materiale, l'angolo di piegatura, il raggio interno e il fattore K. Questi calcolatori calcolano quindi la tolleranza di piegatura e talvolta la deduzione di piegatura, assicurando una lavorazione accurata della lamiera. Utilizzando questi strumenti, i produttori possono risparmiare tempo e ridurre il rischio di errori nei calcoli.
Per utilizzare efficacemente il calcolatore di indennità di piega, gli operatori devono inserire i seguenti parametri:
Calcolatrice correlata:
Ulteriori letture:
Il margine di piegatura è la lunghezza aggiuntiva del materiale necessaria quando si piega la lamiera per ottenere le dimensioni finali desiderate dopo la formatura. Compensa l'allungamento e la compressione che si verificano nel materiale durante il processo di piegatura. Il margine di piegatura varia in base a diversi fattori:
I valori di tolleranza di piegatura sono in genere determinati attraverso una combinazione di dati empirici, calcoli matematici ed esperienza pratica. Progettisti e ingegneri esperti di lamiere hanno sviluppato tabelle e formule di tolleranza di piegatura nel corso di anni di prove e verifiche ripetute.
Utilizzando la formula di piegatura appropriata o facendo riferimento a tabelle di piegatura affidabili, i progettisti possono calcolare con precisione le dimensioni del modello piatto di un pezzo in lamiera che produrrà le dimensioni finali desiderate della piegatura. Questo è fondamentale per creare modelli piani accurati e garantire che il pezzo piegato si adatti e funzioni come previsto.
I calcoli della tolleranza di piegatura e della deduzione di piegatura sono metodi essenziali utilizzati per determinare la lunghezza delle materie prime in lamiera nella loro forma piatta, assicurando il raggiungimento delle dimensioni desiderate del pezzo piegato. La comprensione di questi calcoli è fondamentale per la precisione nella lavorazione della lamiera.
Metodo di calcolo dell'indennità di piega:
Il margine di piegatura (BA) è la quantità di materiale che viene aggiunta alla lunghezza totale della lamiera piatta per tenere conto del materiale che verrà utilizzato nella piegatura.
La seguente equazione viene utilizzata per determinare la lunghezza totale di appiattimento quando si utilizza il valore di tolleranza di piegatura:
Lt = A + B + BA
Dove:
Metodo di calcolo della detrazione per ansa:
La deduzione di piega (BD) è la quantità di materiale che viene sottratta dalla lunghezza totale della lamiera piana per tenere conto del materiale che verrà utilizzato nella piega.
La seguente equazione viene utilizzata per determinare la lunghezza totale di appiattimento quando si utilizza il valore di deduzione della curva:
Lt = A + B - BD
Dove:
Oltre ai metodi di deduzione e di piegatura, si possono utilizzare altre tecniche per determinare la lunghezza in piano delle lamiere grezze. Queste includono:
Materiale | Spessore | Angolo di flessione | V apertura | Raggio interno | Tolleranza alle curve |
---|---|---|---|---|---|
SPCC | 0.5 | 90 | V4 | 0.5 | 0.95 |
100 | 0.73 | ||||
135 | 0.3 | ||||
175 | 0.03 | ||||
SPCC | 0.5 | 90 | V5 | 0.5 | 1.03 |
100 | 0.79 | ||||
135 | 0.33 | ||||
175 | 0.03 | ||||
SPCC | 0.5 | 90 | V6 | 0.5 | 1.1 |
100 | 0.85 | ||||
135 | 0.35 | ||||
175 | 0.03 | ||||
SPCC | 0.6 | 90 | V4 | 0.5 | 1.08 |
100 | 0.83 | ||||
135 | 0.35 | ||||
175 | 0.03 | ||||
SPCC | 0.6 | 90 | V5 | 0.5 | 1.15 |
100 | 0.89 | ||||
135 | 0.37 | ||||
175 | 0.03 | ||||
SPCC | 0.6 | 90 | V6 | 0.5 | 1.23 |
100 | 0.95 | ||||
135 | 0.39 | ||||
175 | 0.03 | ||||
SPCC | 0.8 | 90 | V6 | 0.5 | 1.49 |
120 | 0.73 | ||||
135 | 0.47 | ||||
150 | 0.25 | ||||
SPCC | 0.8 | 90 | V8 | 0 | 1.64 |
120 | 0.81 | ||||
135 | 0.52 | ||||
150 | 0.27 | ||||
SPCC | 0.8 | 90 | V10 | 0 | 1.79 |
120 | 0.88 | ||||
135 | 0.57 | ||||
150 | 0.3 | ||||
SPCC | 1 | 90 | V10 | 0 | 2.05 |
100 | 1.58 | ||||
120 | 1.01 | ||||
135 | 0.62 | ||||
175 | 0.06 | ||||
SPCC | 1 | 90 | V8 | 0 | 1.9 |
100 | 1.47 | ||||
120 | 0.93 | ||||
135 | 0.6 | ||||
175 | 0.05 | ||||
SPCC | 1 | 90 | V6 | 0 | 1.74 |
100 | 1.35 | ||||
120 | 0.86 | ||||
135 | 0.56 | ||||
175 | 0.05 | ||||
SPCC | 1.2 | 90 | V10 | 1.4 | 2.31 |
100 | 1.78 | ||||
120 | 1.13 | ||||
135 | 0.73 | ||||
175 | 0.06 | ||||
SPCC | 1.2 | 90 | V8 | 1.4 | 2.15 |
100 | 1.66 | ||||
120 | 1.06 | ||||
135 | 0.69 | ||||
175 | 0.06 | ||||
SPCC | 1.2 | 90 | V6 | 1.4 | 2 |
100 | 1.55 | ||||
120 | 0.98 | ||||
135 | 0.64 | ||||
175 | 0.05 | ||||
SPCC | 1.5 | 90 | V6 | 1.7 | 2.36 |
100 | 1.82 | ||||
120 | 1.16 | ||||
135 | 0.75 | ||||
175 | 0.06 | ||||
SPCC | 1.5 | 90 | V12 | 1.7 | 2.8 |
100 | 2.17 | ||||
120 | 1.38 | ||||
135 | 0.89 | ||||
175 | 0.08 | ||||
SPCC | 1.5 | 90 | V10 | 1.7 | 2.65 |
100 | 2.05 | ||||
120 | 1.31 | ||||
135 | 0.85 | ||||
175 | 0.07 | ||||
SPCC | 1.5 | 90 | V8 | 1.7 | 2.5 |
100 | 1.94 | ||||
120 | 1.23 | ||||
135 | 0.8 | ||||
175 | 0.07 | ||||
SPCC | 2 | 90 | V10 | 2 | 3.29 |
100 | 2.54 | ||||
120 | 1.62 | ||||
135 | 1.05 | ||||
175 | 0.09 | ||||
SPCC | 2 | 90 | V12 | 2 | 3.44 |
100 | 2.66 | ||||
120 | 1.69 | ||||
135 | 1.1 | ||||
175 | 0.09 | ||||
SPCC | 2.5 | 90 | V18 | 3.03 | 4.6 |
100 | 3.56 | ||||
120 | 2.26 | ||||
135 | 1.47 | ||||
175 | 0.12 | ||||
SPCC | 2.5 | 90 | V12 | 3.03 | 4.15 |
100 | 3.21 | ||||
120 | 2.04 | ||||
135 | 1.32 | ||||
175 | 0.11 | ||||
SPCC | 2.5 | 90 | V10 | 3.03 | 4 |
100 | 3.09 | ||||
120 | 1.97 | ||||
135 | 1.28 | ||||
175 | 0.11 | ||||
SPCC | 3 | 90 | V18 | 3.133.13 | 5.22 |
100 | 4.03 | ||||
120 | 2.57 | ||||
135 | 1.66 | ||||
175 | 0.14 | ||||
SPCC | 3 | 90 | V12 | 3.13 | 4.78 |
100 | 3.69 | ||||
120 | 2.35 | ||||
135 | 1.52 | ||||
175 | 0.13 | ||||
SPCC | 3 | 90 | V10 | 3.13 | 4.63 |
100 | 3.58 | ||||
120 | 2.28 | ||||
135 | 1.48 | ||||
175 | 0.13 |
Materiale | Spessore | Angolo di flessione | V apertura | Raggio interno | Tolleranza alle curve |
---|---|---|---|---|---|
SUS | 0.5 | 90 | 4 | 0.6 | 1.04 |
100 | 0.79 | ||||
120 | 0.48 | ||||
135 | 0.3 | ||||
175 | 0.04 | ||||
SUS | 0.5 | 90 | 5 | 0.6 | 1.15 |
100 | 0.88 | ||||
120 | 0.54 | ||||
135 | 0.33 | ||||
175 | 0.04 | ||||
SUS | 0.5 | 90 | 6 | 0.6 | 1.27 |
100 | 1.13 | ||||
120 | 0.59 | ||||
135 | 0.37 | ||||
175 | 0.04 | ||||
SUS | 0.6 | 90 | 4 | 0.6 | 1.16 |
100 | 0.88 | ||||
120 | 0.54 | ||||
135 | 0.34 | ||||
175 | 0.04 | ||||
SUS | 0.6 | 90 | 5 | 0.6 | 1.27 |
100 | 0.97 | ||||
120 | 0.59 | ||||
135 | 0.37 | ||||
175 | 0.04 | ||||
SUS | 0.6 | 90 | 6 | 0.6 | 1.38 |
100 | 1.05 | ||||
120 | 0.64 | ||||
135 | 0.4 | ||||
175 | 0.05 | ||||
SUS | 0.8 | 90 | 4 | 1.1 | 1.4 |
100 | 1.06 | ||||
120 | 0.65 | ||||
135 | 0.4 | ||||
175 | 0.05 | ||||
SUS | 0.8 | 90 | 5 | 1.1 | 1.51 |
100 | 1.15 | ||||
120 | 0.7 | ||||
135 | 0.44 | ||||
175 | 0.05 | ||||
SUS | 0.8 | 90 | 6 | 1.1 | 1.62 |
100 | 1.23 | ||||
120 | 0.75 | ||||
135 | 0.47 | ||||
175 | 0.06 | ||||
SUS | 1 | 90 | 6 | 1.9 | 1.87 |
100 | 1.42 | ||||
120 | 0.87 | ||||
135 | 0.54 | ||||
175 | 0.07 | ||||
SUS | 1 | 90 | 8 | 1.9 | 2.1 |
100 | 1.6 | ||||
120 | 0.98 | ||||
135 | 0.61 | ||||
175 | 0.07 | ||||
SUS | 1.2 | 90 | 6 | 1.6 | 2.1 |
100 | 1.59 | ||||
120 | 0.97 | ||||
135 | 0.61 | ||||
175 | 0.07 | ||||
SUS | 1.2 | 90 | 8 | 1.6 | 2.32 |
100 | 1.76 | ||||
120 | 1.08 | ||||
135 | 0.67 | ||||
175 | 0.08 | ||||
SUS | 1.2 | 90 | 10 | 1.6 | 2.54 |
100 | 1.93 | ||||
120 | 1.18 | ||||
135 | 0.74 | ||||
175 | 0.09 | ||||
SUS | 1.5 | 90 | 8 | 2.1 | 2.68 |
100 | 2.03 | ||||
120 | 1.24 | ||||
135 | 0.77 | ||||
175 | 0.09 | ||||
SUS | 1.5 | 90 | 10 | 2.1 | 2.9 |
100 | 2.2 | ||||
120 | 1.35 | ||||
135 | 0.84 | ||||
175 | 0.1 | ||||
SUS | 2 | 90 | 10 | 3.49 | |
100 | 2.65 | ||||
120 | 1.62 | ||||
135 | 1.01 | ||||
175 | 0.12 | ||||
SUS | 2 | 90 | 12 | 3.7 | |
100 | 2.82 | ||||
120 | 1.72 | ||||
135 | 1.07 | ||||
175 | 0.13 |
Materiale | Spessore | Angolo di flessione | V apertura | Raggio interno | Tolleranza alle curve |
---|---|---|---|---|---|
SPHC | 1 | 90 | V10 | 1.86 | 2.05 |
100 | 1.58 | ||||
120 | 1.01 | ||||
135 | 0.62 | ||||
175 | 0.06 | ||||
SPHC | 1 | 90 | V8 | 1.86 | 1.9 |
100 | 1.47 | ||||
120 | 0.93 | ||||
135 | 0.6 | ||||
175 | 0.05 | ||||
SPHC | 1 | 90 | V6 | 1.86 | 1.74 |
100 | 1.35 | ||||
120 | 0.86 | ||||
135 | 0.56 | ||||
175 | 0.05 | ||||
SPHC | 1.2 | 90 | V10 | 1.44 | 2.31 |
100 | 1.78 | ||||
120 | 1.13 | ||||
135 | 0.73 | ||||
175 | 0.06 | ||||
SPHC | 1.2 | 90 | V8 | 1.44 | 2.15 |
100 | 1.66 | ||||
120 | 1.06 | ||||
135 | 0.69 | ||||
175 | 0.06 | ||||
SPHC | 1.2 | 90 | V6 | 1.44 | 2 |
100 | 1.55 | ||||
120 | 0.98 | ||||
135 | 0.64 | ||||
175 | 0.05 | ||||
SPHC | 1.5 | 90 | V12 | 1.74 | 2.8 |
100 | 2.17 | ||||
120 | 1.38 | ||||
135 | 0.89 | ||||
175 | 0.08 | ||||
SPHC | 1.5 | 90 | V10 | 1.74 | 2.65 |
100 | 2.05 | ||||
120 | 1.31 | ||||
135 | 0.85 | ||||
175 | 0.07 | ||||
SPHC | 1.5 | 90 | V8 | 1.74 | 2.5 |
100 | 1.94 | ||||
120 | 1.23 | ||||
135 | 0.8 | ||||
175 | 0.07 | ||||
SPHC | 2 | 90 | V12 | 2.01 | 3.44 |
100 | 2.66 | ||||
120 | 1.69 | ||||
135 | 1.1 | ||||
175 | 0.09 | ||||
SPHC | 2 | 90 | V10 | 2.01 | 3.29 |
100 | 2.54 | ||||
120 | 1.62 | ||||
135 | 1.05 | ||||
175 | 0.09 | ||||
SPHC | 2.5 | 90 | V18 | 3 | 4.6 |
100 | 3.25 | ||||
120 | 2.26 | ||||
135 | 1.47 | ||||
175 | 0.12 | ||||
SPHC | 2.5 | 90 | V12 | 3 | 4.15 |
100 | 3.21 | ||||
120 | 2.04 | ||||
135 | 1.32 | ||||
175 | 0.11 | ||||
SPHC | 2.5 | 90 | V10 | 3 | 4 |
100 | 3.09 | ||||
120 | 1.97 | ||||
135 | 1.28 | ||||
175 | 0.11 | ||||
SPHC | 3 | 90 | V18 | 3.1 | 5.22 |
100 | 4.03 | ||||
120 | 2.57 | ||||
135 | 1.66 | ||||
175 | 0.14 | ||||
SPHC | 3 | 90 | V12 | 3.1 | 4.78 |
100 | 3.69 | ||||
120 | 2.35 | ||||
135 | 1.52 | ||||
175 | 0.13 | ||||
SPHC | 3 | 90 | V10 | 3.1 | 4.63 |
100 | 3.58 | ||||
120 | 2.28 | ||||
135 | 1.48 | ||||
175 | 0.13 |
Materiale | Spessore | Angolo di flessione | V apertura | Raggio interno | Tolleranza alle curve |
---|---|---|---|---|---|
SECC | 1 | 90 | V10 | 1.9 | 2.05 |
100 | 1.58 | ||||
120 | 1.01 | ||||
135 | 0.62 | ||||
175 | 0.06 | ||||
SECC | 1 | 90 | V8 | 1.9 | 1.9 |
100 | 1.47 | ||||
120 | 0.93 | ||||
135 | 0.6 | ||||
175 | 0.05 | ||||
SECC | 1 | 90 | V6 | 1.9 | 1.74 |
100 | 1.35 | ||||
120 | 0.86 | ||||
135 | 0.56 | ||||
175 | 0.05 | ||||
SECC | 1.2 | 90 | V10 | 1.4 | 2.31 |
100 | 1.78 | ||||
120 | 1.13 | ||||
135 | 0.73 | ||||
175 | 0.06 | ||||
SECC | 1.2 | 90 | V8 | 1.4 | 2.15 |
100 | 1.66 | ||||
120 | 1.06 | ||||
135 | 0.69 | ||||
175 | 0.06 | ||||
SECC | 1.2 | 90 | V6 | 1.4 | 2 |
100 | 1.55 | ||||
120 | 0.98 | ||||
135 | 0.64 | ||||
175 | 0.05 | ||||
SECC | 1.5 | 90 | V12 | 1.7 | 2.8 |
100 | 2.17 | ||||
120 | 1.38 | ||||
135 | 0.89 | ||||
175 | 0.08 | ||||
SECC | 1.5 | 90 | V10 | 1.7 | 2.65 |
100 | 2.05 | ||||
120 | 1.31 | ||||
135 | 0.85 | ||||
175 | 0.07 | ||||
SECC | 1.5 | 90 | V8 | 1.7 | 2.5 |
100 | 1.94 | ||||
120 | 1.23 | ||||
135 | 0.8 | ||||
175 | 0.07 | ||||
SECC | 2 | 90 | V12 | 2 | 3.44 |
100 | 2.66 | ||||
120 | 1.69 | ||||
135 | 1.1 | ||||
175 | 0.09 | ||||
SECC | 2 | 90 | V10 | 2 | 3.29 |
100 | 2.54 | ||||
120 | 1.62 | ||||
135 | 1.05 | ||||
175 | 0.09 | ||||
SECC | 2.5 | 90 | V18 | 3.03 | 4.6 |
100 | 3.56 | ||||
120 | 2.26 | ||||
135 | 1.47 | ||||
175 | 0.12 | ||||
SECC | 2.5 | 90 | V12 | 3.03 | 4.15 |
100 | 3.21 | ||||
120 | 2.01 | ||||
135 | 1.32 | ||||
175 | 0.11 | ||||
SECC | 2.5 | 90 | V10 | 3.03 | 4 |
100 | 3.09 | ||||
120 | 1.97 | ||||
135 | 1.28 | ||||
175 | 0.11 | ||||
SECC | 3 | 90 | V18 | 3.13 | 5.22 |
100 | 4.03 | ||||
120 | 2.57 | ||||
135 | 1.66 | ||||
175 | 0.14 | ||||
SECC | 3 | 90 | V12 | 3.13 | 1.78 |
100 | 3.69 | ||||
120 | 2.35 | ||||
135 | 1.52 | ||||
175 | 0.13 | ||||
SECC | 3 | 90 | V10 | 3.13 | 4.63 |
100 | 3.58 | ||||
120 | 2.28 | ||||
135 | 1.48 | ||||
175 | 0.13 |
Materiale | Spessore | Angolo di flessione | V apertura | Raggio interno | Tolleranza alle curve |
---|---|---|---|---|---|
AL | 0.8 | 90 | 4 | 0.6 | 1.15 |
100 | 0.81 | ||||
120 | 0.5 | ||||
135 | 0.36 | ||||
175 | 0.03 | ||||
AL | 0.8 | 90 | 5 | 0.6 | 1.2 |
100 | 0.85 | ||||
120 | 0.52 | ||||
135 | 0.37 | ||||
175 | 0.03 | ||||
AL | 0.8 | 90 | 6 | 0.6 | 1.25 |
100 | 0.88 | ||||
120 | 0.54 | ||||
135 | 0.39 | ||||
175 | 0.03 | ||||
AL | 1 | 90 | 6 | 0.6 | 1.49 |
100 | 1.05 | ||||
120 | 6.5 | ||||
135 | 0.46 | ||||
175 | 0.04 | ||||
AL | 1 | 90 | 8 | 0.6 | 1.59 |
100 | 1.13 | ||||
120 | 0.69 | ||||
135 | 0.5 | ||||
175 | 0.04 | ||||
AL | 1.2 | 90 | 6 | 0.9 | 1.73 |
100 | 1.22 | ||||
120 | 0.75 | ||||
135 | 0.54 | ||||
175 | 0.04 | ||||
AL | 1.2 | 90 | 8 | 0.9 | 1.82 |
100 | 1.29 | ||||
120 | 0.79 | ||||
135 | 0.57 | ||||
175 | 0.05 | ||||
AL | 1.5 | 90 | 8 | 1.2 | 2.18 |
100 | 1.54 | ||||
120 | 0.95 | ||||
135 | 0.68 | ||||
175 | 0.06 | ||||
AL | 1.5 | 90 | 10 | 1.2 | 2.28 |
100 | 1.61 | ||||
120 | 0.99 | ||||
135 | 0.71 | ||||
175 | 0.06 | ||||
AL | 1.5 | 90 | 12 | 1.2 | 2.38 |
100 | 1.68 | ||||
120 | 1.03 | ||||
135 | 0.74 | ||||
175 | 0.06 | ||||
AL | 2 | 90 | 14 | 1.6 | 3.07 |
100 | 2.17 | ||||
120 | 1.3 | ||||
135 | 0.93 | ||||
175 | 0.08 | ||||
AL | 2 | 90 | 12 | 1.6 | 2.98 |
100 | 2.11 | ||||
120 | 1.34 | ||||
135 | 0.95 | ||||
175 | 0.08 | ||||
AL | 2 | 90 | 18 | 1.6 | 3.25 |
100 | 2.3 | ||||
120 | 1.42 | ||||
135 | 1.01 | ||||
175 | 0.08 | ||||
AL | 2.5 | 90 | 18 | 2.4 | 3.89 |
100 | 2.75 | ||||
120 | 1.7 | ||||
135 | 1.21 | ||||
175 | 0.1 | ||||
AL | 3 | 90 | 18 | 2.5 | 4.5 |
100 | 3.18 | ||||
120 | 1.96 | ||||
135 | 1.4 | ||||
175 | 0.1 | ||||
AL | 3.2 | 90 | 18 | 2.5 | 4.74 |
100 | 3.35 | ||||
120 | 2.06 | ||||
135 | 1.47 | ||||
175 | 0.12 | ||||
AL | 4 | 90 | 40 | 4.6 | 6.77 |
100 | 4.79 | ||||
120 | 2.95 | ||||
135 | 2.11 | ||||
175 | 0.17 | ||||
AL | 6.8 | 90 | 800 | 9.4 | 12.09 |
100 | 8.55 | ||||
120 | 5.27 | ||||
135 | 3.76 | ||||
175 | 0.31 |
Il fattore K è un coefficiente cruciale nella fabbricazione delle lamiere, che rappresenta la posizione relativa dell'asse neutro all'interno dello spessore del materiale. L'asse neutro è il piano immaginario all'interno del materiale in cui non si verificano compressioni o tensioni durante il processo di piegatura. Il fattore K è calcolato come il rapporto tra la distanza dalla superficie interna all'asse neutro e lo spessore totale del materiale. La comprensione del fattore K è essenziale per calcolare in modo accurato le quote di piegatura, garantendo la precisione delle dimensioni finali dei pezzi piegati.
Il fattore K influenza direttamente il margine di curvatura, che è la lunghezza aggiuntiva di materiale necessaria per accogliere la curva. La formula del margine di curvatura, che di solito include l'angolo di curvatura, il raggio interno, lo spessore del materiale e il fattore K, è la seguente:
dove ( BA ) è il margine di piegatura, ( θ ) è l'angolo di piegatura in radianti, ( r ) è il raggio interno, ( K ) è il fattore K e ( T ) è lo spessore del materiale. Questa formula mette in evidenza l'importanza del fattore K per garantire un calcolo accurato dell'angolo di curvatura, fondamentale per ottenere dimensioni precise del pezzo e ridurre lo spreco di materiale.
Il fattore K non è un valore costante e varia in base a diversi fattori, tra cui le proprietà del materiale, il metodo di piegatura, il raggio di curvatura e l'angolo di piegatura. Materiali e condizioni di piegatura diversi danno luogo a valori diversi del fattore K, che in genere variano tra 0,3 e 0,5. Ad esempio, un materiale ad alta duttilità può avere un fattore K diverso rispetto a un materiale più fragile, influenzando la tolleranza di piegatura e, di conseguenza, le dimensioni finali del pezzo.
Per calcolare con precisione il margine di curvatura e la deduzione di curvatura, iniziare a raccogliere i seguenti parametri:
La tolleranza di curvatura tiene conto della lunghezza aggiuntiva di materiale necessaria per accogliere la curvatura. Per determinare questo valore, utilizzare la formula del margine di curvatura:
1. Convertire l'angolo di curvatura in radianti:
2. Applicare la formula della tolleranza di curvatura:
Quindi, determinare l'arretramento esterno, importante per il calcolo della detrazione per le curve. La formula per l'OSSB è:
Convertire l'angolo di curvatura in radianti:
Applicare la formula dell'arretramento esterno:
Infine, utilizzare l'arretramento esterno e la tolleranza di curvatura per determinare la deduzione di curvatura, che è fondamentale per ottenere dimensioni precise nella fabbricazione di lamiere:
Applicare la formula di deduzione della curva:
La comprensione del significato di ciascun parametro è fondamentale per il successo delle operazioni di piegatura. Il fattore K, ad esempio, influenza la quantità di materiale necessaria per la piegatura, mentre il margine di piegatura assicura che il materiale si adatti correttamente dopo la piegatura. Inoltre, è essenziale tenere conto del ritorno elastico, un fenomeno per cui il metallo ritorna leggermente alla sua forma originale dopo la piegatura, il che può richiedere una piegatura eccessiva del materiale.
Seguendo questi passaggi e considerando attentamente ogni parametro, è possibile calcolare con precisione il margine di piegatura e la deduzione di piegatura necessari per una precisa lavorazione della lamiera.