회색 주철 숙달: 전문가 열처리 가이드

Have you ever wondered how to make gray cast iron more durable and machinable? This article explores the intricate processes of heat treating gray cast iron, including annealing, normalizing, and quenching. You’ll learn about the specific temperatures and techniques that enhance the material’s strength and stability. Whether you’re in manufacturing or just curious, this guide offers valuable insights into optimizing the properties of gray cast iron. Dive in to discover how these methods can improve your projects and products.

목차

1. Annealing

1. Stress relief annealing

To eliminate 잔류 스트레스 in the casting, stabilize its geometric size, and reduce or eliminate distortion after cutting, it is necessary to perform stress relief annealing on the casting.

참조하세요:

The composition of cast iron must be taken into account when determining the stress relief annealing process.

When the temperature of gray cast iron exceeds 550 ℃, graphitization and granulation of some of the cementite may occur, causing a reduction in 강도 및 경도.

The presence of 합금 원소 can increase the temperature at which cementite begins to break down to around 650 ℃.

Typically, the stress relief annealing temperature for gray cast iron is 550 ℃, while low alloy gray cast iron is annealed at 600 ℃, and high alloy gray cast iron can be annealed at 650 ℃. The heating rate is usually 60 to 120 ℃ per hour.

The holding time is determined by factors such as the annealing temperature, the size and complexity of the casting, and the stress relief requirements.

The following figure illustrates the relationship between holding time and 잔류 스트레스 at different annealing temperatures.

Fig. 2 Relationship between annealing temperature and time and residual 내부 스트레스

a) Composition (mass fraction) (%): C 3.18, Si 2.13, Mn 0.70, S 0.125, P 0.73, Ni 1.03, Cr 2.33, Mo 0.65;

b) Composition (mass fraction) (%): C 3.12, Si 1.76, Mn 0.78, S 0.097, P 0.075, Ni 1.02, Cr 0.41, Mo 0.58;

c) Composition (mass fraction) (%): C 2.78, Si 1.77, Mn 0.55, S 0.135, P 0.069, Ni 0.36, Cr 0.10, Mo 0.33, Cu 0.46, V 0.04.

The cooling speed during stress relief annealing of castings must be slow to prevent the development of secondary stress. The cooling rate is typically controlled at a rate of 20 to 40 ℃ per hour, and the temperature should be cooled to below 150 to 200 ℃ before allowing air cooling.

The following table shows the stress relief annealing specifications for some gray 철 주물:

Table 3 stress relief annealing specification for gray cast 철 주물

Casting typeCasting mass / kgCasting wall thickness / mmCharging temperature / ° CTemperature rise rate / (C / h)Heating temperature / CHolding time / h/Slow cooling speed (C / h)Discharge temperature / C
Ordinary cast ironLow alloy cast iron
General casting<200≤200≤100500~550550-5704-630≤200
200-2500≤200≤80500~550550~5706-830≤200
>2500≤200≤60500-550550-570830≤200
Precision casting<200≤200≤100500-550550-5704-620≤200
200~3500≤200≤80500-550550-5706-820≤200
Simple or cylindrical castings, general precision castings<30010-40100-300100-150500~6002-340-50<200
100-100015-60100-200<755008-1040<200
Complex structure and high precision casting1500<40<150<60420~4505~630~40<200
150040-70<200<70500-5509-1020-30<200
1500>70<200<75500-5501.530-40150
Textile machinery small casting machine tool small casting machine tool large casting<50<15<15050-70500-5503~520~30150-200
<1000<60≤200<100500-5503-520-30150-200
>200020-80<15030-60500-5508-1030-40150-200

2. Graphitization annealing

The purpose of graphitization annealing for gray iron castings is to lower their hardness, enhance their machinability, and increase their plasticity and toughness. If the casting does not contain eutectic cementite or only has a small amount, low-temperature graphitization annealing can be performed. However, if the amount of eutectic cementite is substantial, high-temperature graphitization annealing is necessary.

(1) Low temperature graphitization annealing.

The process of graphitization and granulation of eutectoid cementite in gray cast iron will occur when the material is annealed at low temperatures. This process will result in a reduction of hardness and an increase in plasticity.

The low-temperature graphitization annealing of gray cast iron involves heating the casting to a temperature slightly below the lower limit of AC1, holding it at this temperature for a specified period of time to break down the eutectoid cementite, and then cooling it in the furnace.

The process curve is as follows:

Fig. 4 low temperature graphitization annealing process curve of gray cast iron

(2) High temperature graphitization annealing.

The high-temperature graphitization annealing process of gray cast iron involves heating the material to a temperature above the upper limit of AC1. This process decomposes the free cementite in the cast iron into 오스테나이트 and graphite. The material is then held at this temperature for a specified period of time and cooled in a specific way, depending on the desired matrix structure.

If a ferrite matrix with high plasticity and toughness is desired, the process specification and cooling method are as follows:

Fig. 5 high temperature graphitization annealing process of ferrite matrix

If a pearlite matrix structure with high strength and good wear resistance is desired, the process specification and cooling method can be performed according to Figure 6 as follows:

Fig. 6 high temperature graphitization annealing process of pearlite matrix

2. Normalizing

The purpose of normalizing gray cast iron is to improve its strength, hardness, and wear resistance, or to serve as a preliminary heat treatment for surface quenching and to enhance the matrix structure.

The specification for the 정규화 프로세스 of gray cast iron is shown in the figure below:

Normally, the casting is heated to the upper limit of AC1, which is between 30°C and 50°C. This causes the original structure to transform into austenite.

After holding for a period of time, the casting is cooled down by air (refer to figure a below).

For complex or important shaped castings, annealing is required after normalizing to eliminate any internal stress.

If the original structure of cast iron has excessive free cementite, it must be heated to the upper limit of AC1, which is between 50°C and 100°C, to eliminate the free cementite through high-temperature graphitization (refer to Figure b).

The figure below illustrates the impact of heating temperature on the hardness of cast iron after normalizing.

Within the temperature range of normalizing, the hardness of cast iron increases with an increase in temperature.

As such, to achieve high hardness and wear resistance in normalized cast iron, a higher heating temperature within the normalizing temperature range can be selected.

Fig. 8 Effect of normalizing temperature on hardness of gray cast iron

Note: The content of the elements in the figure is expressed in mass fraction (%).

The cooling rate after normalization affects the amount of precipitated ferrite, and therefore, the hardness.

The higher the cooling rate, the lower the amount of ferrite precipitated, resulting in higher hardness.

Thus, the cooling speed can be controlled (e.g., through air cooling, water cooling, or mist cooling) to achieve the desired adjustment of cast iron hardness.

3. Quenching and tempering

1. Quenching

The quenching process for cast iron involves heating the casting to a temperature of AC1 upper limit plus 30-50℃, typically between 850℃-900℃, to transform its structure into austenite. The casting is then held at this temperature to increase the solubility of carbon in austenite before quenching. 오일 담금질 is typically used for this process.

참조하세요:

Here’s the revised version:

Castings with 복잡한 모양 or large sizes should be heated slowly to prevent cracking due to uneven heating. If necessary, preheating them at 500-650℃ can also help avoid cracking.

Table 8.1 shows the effect of quenching heating temperature on the hardness of cast iron. The chemical composition of cast iron listed in the table above can be found in Table 8.2.

Increasing the austenitizing temperature results in higher hardness after quenching. However, higher austenitizing temperatures also increase the risk of deformation and cracking of cast iron, as well as produce more 유지된 오스테나이트, which reduces hardness.

Figure 9 illustrates the effect of holding time on hardness.

Table 8.1 effect of austenitizing temperature on hardness of gray cast iron after fire (oil itching)

회색 주철As castHBW
790°C815C845°C870°C
A217159269450477
B255207450514601
529
C223311477486
D241355
208
469
487
486
520
460
E235512
F235370477480465

Table 8.2 chemical composition (mass fraction) (%) of several cast irons

주철TCCCSiPSMnCrNiMo
A3.190.691.700.2160.0970.760.030.013
B3.100.702.050.800.270.370.45
C3.200.581.760.1870.0540.640.005Trace0.48
D3.220.532.020.1140.0670.660.021.210.52
E3.210.602.240.1140.0710.670.500.060.52
F3.360.611.960.1580.0700.740.350.520.47

Fig. 9 Effect of original structure of cast iron metal matrix on hardness after quenching at 840 ° C for different holding time

The chemical composition (mass fraction) of this gray cast iron is as follows: 3.34% C, 2.22% Si, 0.7% Mn, 0.11% P, and 0.1% S.

The hardenability of gray cast iron is influenced by factors such as graphite size, shape, distribution, chemical composition, and austenite grain size.

Graphite in cast iron decreases its thermal conductivity, thereby reducing its hardenability. The greater the amount of coarse graphite present, the more pronounced this effect becomes.

2. Tempering

The impact of tempering temperature on the mechanical properties of cast iron can be observed in Figure 10 below.

To prevent graphitization, the tempering temperature should generally be maintained below 550℃, and the holding time for tempering should be calculated as t = [casting thickness (mm) / 25] + 1 (h).

Fig. 10 effect of tempering temperature on 경도 및 강도 of quenched cast iron

나눔은 배려라는 사실을 잊지 마세요! : )
Shane
작성자

Shane

MachineMFG 설립자

MachineMFG의 창립자인 저는 10년 넘게 금속 가공 산업에 종사해 왔습니다. 폭넓은 경험을 통해 판금 제조, 기계 가공, 기계 공학 및 금속용 공작 기계 분야의 전문가가 될 수 있었습니다. 저는 이러한 주제에 대해 끊임없이 생각하고, 읽고, 글을 쓰면서 제 분야에서 선두를 유지하기 위해 끊임없이 노력하고 있습니다. 저의 지식과 전문성을 귀사의 비즈니스에 자산으로 활용하세요.

다른 사용자도 좋아할 수 있습니다.
여러분을 위해 엄선했습니다. 계속 읽고 자세히 알아보세요!

자동차 주조: 알아야 할 모든 것

자동차의 복잡한 부품이 어떻게 만들어지는지 궁금한 적이 있나요? 이 기사에서는 자동차 주조의 매혹적인 세계에 대해 알아보고, 자동차를 만드는 첨단 기술과 방법을 자세히 설명합니다.

주조 알루미늄 합금: 특성, 속성 등

자동차 엔진 부품의 내구성과 효율성을 높이는 비결이 무엇인지 궁금한 적이 있나요? 이 기사에서는 자동차 엔지니어링의 숨은 챔피언인 알루미늄 합금 주조의 비밀을 공개합니다. 자세히 알아보기...
알루미늄 다이캐스팅의 10가지 결함 분석

알루미늄 다이캐스팅 결함 10가지 설명

일부 알루미늄 다이캐스팅이 조기에 고장 나는 이유가 궁금한 적이 있나요? 이 글에서는 알루미늄 다이캐스팅에서 발견되는 일반적인 결함과 그 근본 원인을 살펴봅니다. 출처:...
다양한 유형의 캐스팅 프로세스

캐스팅의 14가지 유형: 궁극의 가이드

주조의 매혹적인 세계에 대해 궁금한 적이 있나요? 오래되었지만 끊임없이 진화하는 이 제조 공정은 수많은 방식으로 우리의 일상을 형성하고 있습니다. 이 블로그 게시물에서는 주조에 대해 자세히 알아보세요.

주철의 종류: 분류, 등급 및 용도

주철의 매혹적인 세계에 대해 궁금한 적이 있나요? 이 블로그 게시물에서는 다양한 종류의 주철에 대해 자세히 알아보고 주철의 고유한 특성과...
Types of Casting Materials

주조 재료의 8가지 유형 설명

In this blog post, we'll explore the various types of materials used in casting processes. As an experienced mechanical engineer, I'll share my insights and knowledge to help you understand…

주강과 주철: 차이점 이해하기

주철과 주강의 차이점은 무엇이며 왜 관심을 가져야 할까요? 프로젝트에 적합한 재료를 선택하려면 이러한 재료를 이해하는 것이 필수적입니다. 이 글에서 살펴볼 내용은 다음과 같습니다.

알아야 할 철 주물의 7가지 유형

특정 철 주물은 진동 흡수에 탁월한 반면 다른 주물은 뛰어난 강도와 내마모성을 자랑하는 이유는 무엇일까요? 기계 및 구조 부품에 필수적인 철 주물은 다양한 유형이 있으며, 각각 ...
MachineMFG
비즈니스를 한 단계 더 발전시키세요
뉴스레터 구독하기
최신 뉴스, 기사, 리소스를 매주 받은 편지함으로 보내드립니다.

문의하기

24시간 이내에 답변을 받으실 수 있습니다.