서보 모터 크기 조정: 기계 엔지니어를 위한 단계별 가이드

Ever wondered how machines select the perfect motor? This article unveils the fascinating process behind choosing the right servo motor for various mechanical tasks. Dive in to understand the calculations and criteria engineers use to ensure efficiency and precision in machinery.

목차

Case One

주어진:

  • Disc mass M=50 kg
  • Disc diameter D=500 mm
  • Maximum disc speed 60 rpm

Please select the servo motor and reduction gear, component schematic as follows:

Calculating the moment of inertia for the disc rotation

JL = MD2/8 = 50 * 502 / 8 = 15625 [kg·cm2]

Assuming a gear reduction ratio of 1:R, the load inertia reflected on the servo motor shaft is 15625/R2.

According to the principle that the load inertia should be less than three times the rotor inertia JM of the motor,

if a 400W motor is selected, JM = 0.277 [kg·cm2],

then: 15625 / R2 < 3*0.277, R2 > 18803, R > 137,

the output speed = 3000/137 = 22 [rpm],

which does not meet the requirement.

If a 500W motor is selected, JM = 8.17 [kg·cm2],

then: 15625 / R2 < 3*8.17, R2 > 637, R > 25,

the output speed = 2000/25 = 80 [rpm],

which satisfies the requirement.

This type of transmission has minimal resistance, so torque calculations are ignored.

Case Two

주어진:

  • Load weight M = 50 kg
  • Synchronous belt wheel diameter D = 120 mm
  • Reduction ratio R1 = 10, R2 = 2
  • Friction coefficient between load and machine table µ = 0.6
  • Maximum motion speed of load: 30 m/min
  • Time for load to accelerate from rest to maximum speed: 200ms

Ignoring the weight of each conveyor belt wheel,

What is the minimum power requirement for a motor to drive such a load?

The schematic diagram of the component is as follows:

1. Calculating the load inertia reflected on the motor shaft:

JL = M * D2 / 4 / R12 

   = 50 * 144 / 4 / 100

   = 18 [kg·cm2]

According to the principle that load inertia should be less than three times the motor rotor inertia (JM):

JM > 6 [kg·cm2]

2. Calculating the torque required to drive the motor load:

Torque required to overcome friction:

Tf = M * g * µ * (D / 2) / R2 / R1

= 50 * 9.8 * 0.6 * 0.06 / 2 / 10

= 0.882 [N·m]

Torque required for acceleration:

Ta = M * a * (D / 2) / R2 / R1

= 50 * (30 / 60 / 0.2) * 0.06 / 2 / 10

= 0.375 [N·m]

The servo motor’s rated torque should be greater than Tf, and the maximum torque should be greater than Tf + Ta.

3. Calculating the required motor speed:

N = v / (πD) * R1

= 30 / (3.14 * 0.12) * 10

= 796 [rpm]

Case Three

주어진:

  • Load weight M = 200 kg
  • Screw pitch PB = 20 mm
  • Screw diameter DB = 50 mm
  • Screw weight MB = 40 kg
  • Coefficient of friction µ = 0.2
  • Mechanical efficiency η = 0.9
  • Load movement speed V = 30 m/min
  • Total movement time t = 1.4 s
  • Acceleration and deceleration time t1 = t3 = 0.2 s
  • Resting time t4 = 0.3 s

Please select the servo motor with the minimum power that meets the load requirements,

The component diagram is as follows:

1. Calculation of Load Inertia Converted to the Motor Shaft

Load inertia of the weight converted to the motor shaft

JW = M * (PB / 2π)²

= 200 * (2 / 6.28)²

= 20.29 [kg·cm²]

The rotational inertia of the screw

JB = MB * DB² / 8

= 40 * 25 / 8

= 125 [kg·cm²]

Total load inertia

JL = JW + JB = 145.29 [kg·cm²]

2. Calculation of Motor Speed

Required motor speed

N = V / PB

= 30 / 0.02

= 1500 [rpm]

3. Calculation of Torque Required to Drive the Motor Load

The torque required to overcome friction

Tf = M * g * µ * PB / 2π / η

= 200 * 9.8 * 0.2 * 0.02 / 2π / 0.9

= 1.387 [N·m]

Torque required when the weight is accelerating

TA1 = M * a * PB / 2π / η

= 200 * (30 / 60 / 0.2) * 0.02 / 2π / 0.9

= 1.769 [N·m]

Torque required when the screw is accelerating

TA2 = JB * α / η

= JB * (N * 2π / 60 / t1) / η

= 0.0125 * (1500 * 6.28 / 60 / 0.2) / 0.9

= 10.903 [N·m]

Total torque required for acceleration

TA = TA1 + TA2 = 12.672 [N·m]

4. Selection of Servo Motor

Rated torque of the servo motor

T > Tf and T > Trms

Maximum torque of the servo motor

T최대 > Tf + TA

Finally, the ECMA-E31820ES motor was selected.

나눔은 배려라는 사실을 잊지 마세요! : )
Shane
작성자

Shane

MachineMFG 설립자

MachineMFG의 창립자인 저는 10년 넘게 금속 가공 산업에 종사해 왔습니다. 폭넓은 경험을 통해 판금 제조, 기계 가공, 기계 공학 및 금속용 공작 기계 분야의 전문가가 될 수 있었습니다. 저는 이러한 주제에 대해 끊임없이 생각하고, 읽고, 글을 쓰면서 제 분야에서 선두를 유지하기 위해 끊임없이 노력하고 있습니다. 저의 지식과 전문성을 귀사의 비즈니스에 자산으로 활용하세요.

다른 사용자도 좋아할 수 있습니다.
여러분을 위해 엄선했습니다. 계속 읽고 자세히 알아보세요!

3가지 서보 모터 제어 모드 설명

기계가 어떻게 정밀한 움직임을 구현하는지 궁금한 적이 있나요? 이 블로그에서는 서보 모터 제어 모드의 매혹적인 세계를 살펴봅니다. 펄스부터 아날로그 제어까지, 각 방법이 어떻게 작동하는지 살펴봅니다...
올바른 서보 모터를 선택하는 방법

올바른 서보 모터를 선택하는 방법은?

프로젝트에 적합한 서보 모터를 선택하는 것은 옵션이 너무 많기 때문에 어려운 작업이 될 수 있습니다. 이 문서에서는 주요 고려 사항을 세분화하여 프로세스를 간소화합니다: 애플리케이션 ...
서보 모터와 스테퍼 모터

서보 모터와 스테퍼 모터: 주요 차이점 이해하기

서보 모터와 스테퍼 모터가 현대 기계에서 뚜렷하면서도 중추적인 역할을 하는 이유는 무엇일까요? 이 문서에서는 두 모터의 근본적인 차이점, 장점 및 특정 응용 분야를 살펴봅니다. 이 글을 읽으면 서보 모터에 대한 통찰력을 얻을 수 있습니다.
서보 모터 지터의 원인은 무엇인가요?

서보 모터 지터: 원인, 솔루션 및 예방

서보 모터가 갑자기 흔들려 기계의 원활한 작동을 방해하는 이유가 궁금한 적이 있으신가요? 이 문서에서는 서보 모터 지터의 일반적인 원인을 밝히고 이에 대한 실용적인 솔루션을 제공합니다.

2024년 상위 10대 서보 모터 제조업체 및 브랜드

빠르게 변화하는 산업 자동화 세계에서 서보 모터는 정밀도와 효율성을 높이는 숨은 영웅입니다. 하지만 수많은 제조업체가 관심을 끌기 위해 경쟁하는 상황에서 어떤 제조업체를 어떻게 알 수 있을까요?
선형 모터의 원리와 특성 설명

리니어 모터: 원리, 특성 및 응용 분야

기차가 어떻게 선로 위에 떠 있을 수 있는지, 로봇이 어떻게 정밀한 움직임을 구현하는지 궁금한 적이 있나요? 이 기사에서는 선형 모터의 원리, 유형 및 고유한 장점을 설명하는 매혹적인 선형 모터의 세계를 공개합니다....
MachineMFG
비즈니스를 한 단계 더 발전시키세요
뉴스레터 구독하기
최신 뉴스, 기사, 리소스를 매주 받은 편지함으로 보내드립니다.

문의하기

24시간 이내에 답변을 받으실 수 있습니다.