Warmtebehandeling C-curve: Alles wat u moet weten

Hoe beïnvloedt de afkoelsnelheid de microstructuur van staal? De C-curve in warmtebehandeling onthult de fascinerende transformatie van de microstructuur van koolstofstaal tijdens het afkoelen. Dit artikel gaat in op de verschillen tussen isothermische en continue koelmethoden en legt uit hoe verschillende koelsnelheden leiden tot de vorming van pareliet-, bainiet- en martensietstructuren. Door de C-curve te begrijpen, begrijp je hoe je de staaleigenschappen kunt beheersen voor de gewenste hardheid en sterkte. Duik in de wetenschap achter de transformatie van staal en leer hoe u uw warmtebehandelingsprocessen kunt optimaliseren.

Inhoudsopgave

Warmtebehandelingsprincipe

Transformatie van staal tijdens verhitting

Transformatie van staal tijdens verhitting

C-curve

De C-curve is een hulpmiddel om de transformatie van de microstructuur van koolstofstaal te analyseren tijdens het afkoelen nadat het is verhit om austeniet te vormen.

Er zijn twee methoden om staal te koelen tijdens het warmtebehandelingsproces:

  • Isotherme koelingstransformatie: Bij dit proces wordt het staal, dat verhit is om austeniet te vormen, in een relatief hoog tempo afgekoeld tot een specifieke temperatuur onder de A1-lijn en vervolgens geïsoleerd zodat het austeniet bij een constante temperatuur een structurele transformatie kan ondergaan.
  • Continue koeling overgang: Dit verwijst naar de voortdurende temperatuurdaling die in de loop van de tijd optreedt tijdens het koelproces.

In de praktische productie is continue koeling de meest gebruikte methode.

1. Koelmethode van staal tijdens warmtebehandeling

Isotherme transformatiecurve van onderkoeld austeniet in eutectoïde staal

a. Overgang bij hoge temperatuur

De austeniet van eutectoïde staal wordt afgekoeld tot een temperatuur tussen A1 en 550 °C, wat resulteert in een parelietstructuur door het proces van isotherme transformatie. Deze transformatie van austeniet in pareliet is het resultaat van de afwisselende nucleatie en groei van ferriet en cementiet, zoals afgebeeld in Figuur 3-7.

Vorming van pareliet

Ten eerste wordt de kern van cementietkristallen gevormd op de korrelgrens van austeniet.

De koolstofgehalte van cementiet is hoger dan die van austeniet, wat leidt tot absorptie van koolstofatomen uit het omringende austeniet.

Als gevolg hiervan wordt het koolstofgehalte van het nabijgelegen austeniet verlaagd, waardoor de voorwaarden worden gecreëerd voor de vorming van ferriet en dit deel van het austeniet wordt omgezet in ferriet.

De lage koolstofoplosbaarheid van ferriet betekent dat overtollige koolstof moet worden overgebracht naar aangrenzend austeniet terwijl het groeit, waardoor het koolstofgehalte van het aangrenzende austenietgebied toeneemt en de voorwaarden worden gecreëerd voor de vorming van nieuw cementiet.

Door dit proces wordt austeniet uiteindelijk volledig getransformeerd in een parelietstructuur met afwisselende lagen ferriet en cementiet.

Voor de vorming van pareliet is de beweging van koolstofatomen nodig, waarbij de bewegingsafstand de breedte van de parelietlamellen bepaalt. Bij hoge temperaturen is de beweging van koolstofatomen uitgebreider, wat resulteert in bredere parelietlamellen.

Omgekeerd hebben de koolstofatomen bij lage temperaturen moeite om te bewegen en daarom zijn de parelietlamellen dichter. De microstructuur getransformeerd van 727°C tot 650°C is pareliet.

De structuur die verkregen wordt door transformatie tussen 650°C en 600°C staat bekend als sorbiet, dat ook wel fijn pareliet wordt genoemd. De transformatie tussen 600°C en 550°C resulteert in de vorming van troostiet, dat ook bekend staat als zeer fijn pareliet.

Deze drie soorten parelietstructuren onderscheiden zich alleen door hun lamellaire afstand en hebben geen fundamentele verschillen.

b. Overgang van gemiddelde temperatuur

De producten van de isotherme transformatie van austeniet in eutectoïde staal, van onderkoeling tot een temperatuurbereik van 550 °C tot 240 °C, behoren tot de bainietstructuur. Het bovenste bainiet wordt gevormd in het bovenste deel van dit temperatuurbereik, terwijl het onderste bainiet wordt verkregen in het onderste deel. Het onderste bainiet heeft een betere hardheid en sterkte en een betere plasticiteit en taaiheid. Het bovenste bainiet heeft echter geen praktische toepassingen.

c. Overgang bij lage temperatuur

Het is een grote uitdaging voor koolstofatomen in austeniet om te verschuiven onder 240°C.

Austeniet ondergaat alleen een isomorfe transformatie, waarbij het verandert van een gezichtsgecentreerde kubische (y-ijzer) structuur in een lichaamsgecentreerde kubische (α-ijzer) structuur.

Alle koolstofatomen in het oorspronkelijke austeniet blijven in het lichaam-gecentreerde kubische rooster, wat resulteert in een oververzadigd α-ijzer.

Deze oververzadigde vaste oplossing van koolstof in α-ijzer wordt martensiet genoemd.

Behouden austeniet

Wanneer het austeniet van eutectoïde staal wordt afgekoeld tot 240°C (MS), begint het te transformeren in martensiet.

Naarmate de temperatuur verder daalt, neemt de hoeveelheid martensiet toe terwijl de onderkoelde austeniet afneemt.

Tegen de tijd dat de temperatuur -50°C (MF) bereikt, is het onderkoelde austeniet volledig getransformeerd in martensiet.

De structuur tussen MS en MF bestaat dus uit martensiet en behouden austeniet.

Door variaties in koolstofgehalte heeft martensiet twee vormen.

Martensiet met een hoog koolstofgehalte neemt een naaldachtige vorm aan, bekend als naaldachtig martensiet.

Martensiet met een laag koolstofgehalte is daarentegen plaatvormig en wordt plaatachtig martensiet genoemd.

WeefselKoolstofgehalte (%)Mechanische eigenschappen
HRC(Mpa)ak
J/cm2
Ψ (%))
Koolstofarm0.240~4515006020~30
Hoog koolstofgehalte1.260~6550052~4

Tabel 4-5 vergelijking van eigenschappen van laag koolstof martensiet 15MnVB staal en gehard en getemperd 40Cr staal

Staalsoort15MnVB40Cr
StaatAfschrikken en ontlaten van martensiet met laag koolstofgehalte
HRC4338
σo.2/MPa1133800
σb/MPa13531000
δ5(%)12.69
φ(%)5145
ak/Jcm-29560
ak(-50℃)/J.cm-270≤40

(2) Continu koelen

Fig. 3-9 Koeltransformatiecurve van eutectoïde staal

a. Koelen met oven

Wanneer de afkoelcurve de startlijn voor de perliettransformatie snijdt, begint de transformatie van austeniet naar perliet.

Zodra de afkoelcurve de eindlijn van de overgang snijdt, is de transformatie voltooid.

Als gevolg van de transformatie binnen het parelietgebied wordt een parelietstructuur gevormd.

b. Koeling in lucht

Als gevolg van de snelle afkoelsnelheid vindt de transformatie plaats in het sorbietgebied, waarbij ferriet als transformatieproduct ontstaat.

c. oliekoeling

De afkoelingscurve snijdt alleen de startlijn voor de pareliettransformatie (in de troostiettransformatiezone), maar niet de eindlijn.

Hierdoor wordt slechts een deel van het austeniet getransformeerd, wat resulteert in de vorming van troostiet als transformatieproduct. Het resterende deel van austeniet transformeert in martensiet bij afkoeling tot de MS-lijn.

Tot slot een gemengde structuur van martensiet en troostiet wordt verkregen.

Dit verwijst naar het product dat in olie is gekoeld.

d. Waterkoeling.

Door de snelle afkoelsnelheid snijdt de afkoelingscurve niet met de startlijn voor de parelmoertransformatie.

Bij afkoeling onder de startlijn voor de martensiettransformatie zal austeniet overgaan in martensiet.

Vergelijking tussen continue afkoelcurve en isotherme C-curve

De curve voor continue koeling bevindt zich rechtsonder de isotherme C-curve, met een lagere P-transformatietemperatuur en een langere duur.

Eutectoïde en hypereutectoïde staal hebben een P-transformatie eindlijn, maar geen B-type transformatie tijdens continue afkoeling.

Voor hypoeutectoïde staal kan onderkoeling in een bepaald temperatuurbereik tijdens continu koelen leiden tot een gedeeltelijke omzetting in B.

Het bepalen van de continue afkoelingstransformatiecurve is een uitdaging, dus veel staalsoorten hebben deze informatie nog niet.

Bij praktische warmtebehandelingen wordt het continue afkoelingsproces vaak geschat aan de hand van de C-curve.

Vergelijking van TTT-curve en CCT-curve van eutectoïde koolstofstaal

TT-curve van hypoeutectoïde en hypereutectoïde staalsoorten

2. Hardbaarheid van staal

(1) Concept van hardbaarheid

De hardheid van staal verwijst naar de diepte waarop het staal gehard kan worden tijdens het afschrikken, wat een eigenschap is van het staal.

Tijdens het afschrikken varieert de koelsnelheid op verschillende delen van het werkstuk.

Het oppervlak koelt het snelst af en overtreft de kritische koelsnelheid voor de vorming van martensiet. Als gevolg hiervan kan een martensitische structuur wordt gevormd na afschrikken.

Als de koelsnelheid naar het midden toe afneemt en de koelsnelheid op een bepaalde diepte vanaf het oppervlak onder de kritische koelsnelheid komt die nodig is voor de vorming van martensiet in het staal, dan zal het werkstuk niet volledig uitharden omdat er een niet-martensitische structuur aanwezig zal zijn na het afschrikken.

(2) Effect van hardbaarheid op mechanische eigenschappen

De mechanische eigenschappen van staal met een goede hardbaarheid zijn uniform over de hele doorsnede, terwijl die van staal met een slechte hardbaarheid variëren over de doorsnede. De mechanische eigenschappen, vooral de taaiheid, nemen af naarmate je dichter bij het centrum komt.

Afb. 5-53 Vergelijking van mechanische eigenschappen van staal met verschillende hardbaarheid na afschrikken en ontlaten.

a) Geharde as

b) Ongeharde as

(3) Bepaling en uitdrukking van hardbaarheid

Er zijn verschillende methoden om de hardbaarheid te bepalen. De meest gebruikte methode, zoals gespecificeerd in GB225, is de afschriktest voor constructiestaal. Deze test meet de dikte van de hardbare laag.

Een andere veelgebruikte maat voor hardbaarheid is de kritische diameter. Deze waarde vertegenwoordigt de maximale diameter van de semi-martensitische structuur (50%) die kan worden bereikt in het midden van het staal na afschrikken in een koelmedium. Het wordt aangeduid als Do.

Bovenste afschrikmethode

Kritische afschrikdiameter

Vergeet niet: sharing is caring! : )
Shane
Auteur

Shane

Oprichter van MachineMFG

Als oprichter van MachineMFG heb ik meer dan tien jaar van mijn carrière gewijd aan de metaalbewerkingsindustrie. Door mijn uitgebreide ervaring ben ik een expert geworden op het gebied van plaatbewerking, verspaning, werktuigbouwkunde en gereedschapsmachines voor metalen. Ik denk, lees en schrijf voortdurend over deze onderwerpen en streef er voortdurend naar om voorop te blijven lopen in mijn vakgebied. Laat mijn kennis en expertise een aanwinst zijn voor uw bedrijf.

Volgende

H Beam Maten en Gewichtstabel

Heb je je ooit afgevraagd wat de verborgen wereld is van H-balken? In dit boeiende artikel ontrafelen we de mysteries achter deze essentiële constructiecomponenten. Onze deskundige werktuigbouwkundige...
MachineMFG
Til uw bedrijf naar een hoger niveau
Abonneer je op onze nieuwsbrief
Het laatste nieuws, artikelen en bronnen, wekelijks naar je inbox gestuurd.
© 2024. Alle rechten voorbehouden.

Neem contact met ons op

Je krijgt binnen 24 uur antwoord van ons.