Já alguma vez se interrogou sobre a forma como as peças de chapa metálica são concebidas e fabricadas com precisão? Nesta publicação do blogue, vamos mergulhar no fascinante mundo da margem de curvatura - um conceito crucial no fabrico de chapas metálicas. Como engenheiro mecânico experiente, partilharei as minhas ideias e explicarei como a margem de curvatura permite aos designers criar padrões planos precisos para operações de curvatura. No final deste artigo, terá uma sólida compreensão da tolerância de dobragem e da sua importância na produção de componentes de chapa metálica de elevada qualidade.
A tolerância de dobragem é um conceito crítico no fabrico de chapas metálicas, particularmente na conceção e fabrico de peças dobradas por pressão. Refere-se ao comprimento adicional de material necessário para acomodar uma dobra na chapa metálica. Esta tolerância assegura que as dimensões finais da peça dobrada correspondem às especificações do projeto após a dobragem.
A tolerância de dobragem não é meramente um dado estatístico; deriva de medições empíricas e cálculos acumulados por projectistas de moldes experientes ao longo de anos de prática. Estes dados são essenciais para determinar com exatidão as dimensões desdobradas ou planas das peças de chapa metálica antes da dobragem. Ao incorporar a tolerância de dobragem nos seus cálculos, os projectistas de moldes podem prever as dimensões finais de uma peça com elevada precisão.
Um dos maiores desafios no fabrico de chapas metálicas é garantir a precisão das dimensões desdobradas após a dobragem. Isto implica ter em conta vários factores, como o tipo de material, a espessura, o raio de curvatura e o ângulo de curvatura. Os cálculos exactos da tolerância de dobragem são essenciais para evitar discrepâncias entre as peças projectadas e fabricadas.
A tolerância de dobragem é uma ferramenta fundamental para os projectistas de moldes na indústria de chapas metálicas. Permite o cálculo exato das dimensões de dobragem das peças dobradas por pressão, garantindo que o produto final cumpre as especificações do projeto e as normas de qualidade. Ao compreender e aplicar corretamente a tolerância de dobragem, os projectistas podem ultrapassar os desafios associados à dobragem e obter uma elevada precisão no seu trabalho.
Depois de aprender sobre a tolerância de dobragem, o passo seguinte é calculá-la. A tolerância de dobragem é um fator crítico no fabrico de chapas metálicas, uma vez que determina a quantidade de material necessário para acomodar uma dobragem. Isto assegura que as dimensões finais da peça são exactas após a dobragem.
Uma das formas mais fáceis de calcular a margem de curvatura é utilizar um calculadora de dobragem. Estas calculadoras foram concebidas para calcular de forma rápida e exacta a margem de curvatura com base nos parâmetros de entrada, tais como o tipo de material, a espessura, o ângulo de curvatura e o raio de curvatura.
Para além de uma calculadora de tolerância de dobragem dedicada, a calculadora acima também pode ajudar a calcular vários parâmetros relacionados com a dobragem de chapas metálicas, incluindo:
Para os interessados em compreender melhor como calcular manualmente a margem de curvatura, temos uma análise pormenorizada disponível numa das publicações do nosso blogue. Esta publicação aborda os método passo a passo para calcular a margem de curvaturaincluindo as fórmulas e os factores envolvidos.
Material | Espessura | Dedução | No interior R | Ângulo | Morrer | Soco | ||
---|---|---|---|---|---|---|---|---|
R | V Largura | R | Ângulo | |||||
Chapa de aço | 0.8 | 1.5 | 1.3 | 90° | 0.5 | 8 | 0.2 | 88° |
0.9 | 1.7 | 1.3 | 90° | 0.5 | 6 | 0.2 | 88° | |
1 | 1.8 | 1.3 | 90° | 0.5 | 8 | 0.2 | 88° | |
1.2 | 1.91 | 1 | 90° | 0.4 | 6 | 0.2 | 88° | |
1.2 | 2.1 | 1.3 | 90° | 0.5 | 8 | 0.2 | 88° | |
1.5 | 2.5 | 1.3 | 90° | 0.5 | 8 | 0.2 | 88° | |
Laminados a frio Prato | 1.6 | 2.65 | 1.3 | 90° | 0.5 | 8 | 0.6 | 88° |
1.8 | 3.4 | 2 | 90° | 0.8 | 12 | 0.6 | 88° | |
2 | 3.5 | 2 | 90° | 0.8 | 12 | 0.6 | 88° | |
2.3 | 3.75 | 2 | 90° | 0.8 | 12 | 0.6 | 88° | |
2.5 | 4.2 | 2.6 | 90° | 0.8 | 16 | 0.6 | 88° | |
3 | 5.05 | 2.6 | 90° | 0.8 | 16 | 0.6 | 88° | |
4 | 6.9 | 4 | 90° | 0.8 | 25 | 0.6 | 88° | |
Laminados a quente Prato | 2.3 | 3.77 | 2.6 | 90° | 0.8 | 16 | 0.6 | 88° |
3.2 | 5.2 | 2.6 | 90° | 0.8 | 16 | 0.6 | 88° | |
4.2 | 7.4 | 4 | 90° | 0.8 | 25 | 0.6 | 88° | |
4.8 | 8.1 | 4 | 90° | 0.8 | 25 | 0.6 | 88° | |
Placa de alumínio | 0.8 | 1.5 | 1.3 | 90° | 0.5 | 6 | 0.2 | 88° |
1 | 1.6 | 1.3 | 90° | 0.5 | 8 | 0.2 | 88° | |
1.2 | 2.1 | 1.3 | 90° | 0.5 | 8 | 0.2 | 88° | |
1.5 | 2.45 | 1.3 | 90° | 0.5 | 8 | 0.2 | 88° | |
1.6 | 2.7 | 1.3 | 90° | 0.5 | 8 | 0.6 | 88° | |
1.6 | 2.4 | 1.3 | 90° | 0.6 | 10 | 0.6 | 88° | |
2 | 3.25 | 2 | 90° | 0.8 | 12 | 0.6 | 88° | |
2.3 | 3.6 | 2.6 | 90° | 0.8 | 16 | 0.6 | 88° | |
2.5 | 4.2 | 2.6 | 90° | 0.5 | 16 | 0.6 | 88° | |
3 | 4.7 | 2.6 | 90° | 0.8 | 16 | 0.6 | 88° | |
3.2 | 5 | 2.6 | 90° | 0.8 | 16 | 0.6 | 88° | |
3.5 | 5.9 | 4 | 90° | 0.8 | 25 | 1.5 | 88° | |
4 | 6.8 | 4 | 90° | 0.8 | 25 | 1.5 | 88° | |
5 | 8.1 | 4 | 90° | 0.8 | 25 | 3.2 | 88° | |
Placa de cobre | 0.8 | 1.6 | 1.3 | 90° | 0.5 | 6 | 0.2 | 88° |
1 | 1.9 | 1.3 | 90° | 0.5 | 8 | 0.2 | 88° | |
1.2 | 2.15 | 1.3 | 90° | 0.5 | 8 | 0.2 | 88° | |
1.5 | 2.55 | 1.3 | 90° | 0.5 | 8 | 0.2 | 88° | |
2 | 3.5 | 2 | 90° | 0.8 | 12 | 0.6 | 88° | |
2.5 | 4.2 | 2.6 | 90° | 0.8 | 16 | 0.6 | 88° | |
3 | 5 | 2.6 | 90° | 0.8 | 16 | 0.6 | 88° | |
3.2 | 5.1 | 2.6 | 90° | 0.8 | 16 | 0.6 | 88° | |
3.5 | 6 | 4 | 90° | 0.8 | 25 | 1.5 | 88° | |
4 | 7 | 4 | 90° | 0.8 | 25 | 1.5 | 88° |
T | Chapa de aço laminada a frio SPCC (chapa electrogalvanizada SECC) | ||||||||||||||
V | Ângulo | 0.6 | 0.8 | 1 | 1.2 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | Dimensão mínima | Nota |
V4 | 90 | 0.9 | 1.4 | 2.8 | |||||||||||
120 | 0.7 | ||||||||||||||
150 | 0.2 | ||||||||||||||
V6 | 90 | 1.5 | 1.7 | 2.15 | 4.5 | ||||||||||
120 | 0.7 | 0.86 | 1 | ||||||||||||
150 | 0.2 | 0.3 | 0.4 | ||||||||||||
V7 | 90 | 1.6 | 1.8 | 2.1 | 2.4 | 5 | |||||||||
120 | 0.8 | 0.9 | 1 | ||||||||||||
150 | 0.3 | 0.3 | 0.3 | ||||||||||||
V8 | 90 | 1.6 | 1.9 | 2.2 | 2.5 | 5.5 | |||||||||
30 | 0.3 | 0.34 | 0.4 | 0.5 | |||||||||||
45 | 0.6 | 0.7 | 0.8 | 1 | |||||||||||
60 | 1 | 1.1 | 1.3 | 1.5 | |||||||||||
120 | 0.8 | 0.9 | 1.1 | 1.3 | |||||||||||
150 | 0.3 | 0.3 | 0.2 | 0.5 | |||||||||||
V10 | 90 | 2.7 | 3.2 | 7 | |||||||||||
120 | 1.3 | 1.6 | |||||||||||||
150 | 0.5 | 0.5 | |||||||||||||
V12 | 90 | 2.8 | 3.65 | 4.5 | 8.5 | ||||||||||
30 | 0.5 | 0.6 | 0.7 | ||||||||||||
45 | 1,0 | 1.3 | 1.5 | ||||||||||||
60 | 1.7 | 2 | 2.4 | ||||||||||||
120 | 1.4 | 1.7 | 2 | ||||||||||||
150 | 0.5 | 0.6 | 0.7 | ||||||||||||
V14 | 90 | 4.3 | 10 | ||||||||||||
120 | 2.1 | ||||||||||||||
150 | 0.7 | ||||||||||||||
V16 | 90 | 4.5 | 5 | 11 | |||||||||||
120 | 2.2 | ||||||||||||||
150 | 0.8 | ||||||||||||||
V18 | 90 | 4.6 | 13 | ||||||||||||
120 | 2.3 | ||||||||||||||
150 | 0.8 | ||||||||||||||
V20 | 90 | 4.8 | 5.1 | 6.6 | 14 | ||||||||||
120 | 2.3 | 3.3 | |||||||||||||
150 | 0.8 | 1.1 | |||||||||||||
V25 | 90 | 5.7 | 6.4 | 7 | 17.5 | ||||||||||
120 | 2.8 | 3.1 | 3.4 | ||||||||||||
150 | 1 | 1 | 1.2 | ||||||||||||
V32 | 90 | 7.5 | 8.2 | 22 | |||||||||||
120 | 4 | ||||||||||||||
150 | 1.4 | ||||||||||||||
V40 | 90 | 8.7 | 9.4 | 28 | |||||||||||
120 | 4.3 | 4.6 | |||||||||||||
150 | 1.5 | 1.6 |
T | Folha de alumínio L2Y2 | ||||||||||||||
V | Ângulo | 0.6 | 0.8 | 1 | 1.2 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | Dimensão mínima | Nota |
V4 | 1.4 | 2.8 | |||||||||||||
V6 | 1.6 | 4.5 | |||||||||||||
V7 | 1.6 | 1.8 | 5 | ||||||||||||
V8 | 1.8 | 2.4 | 3.1 | 5.5 | |||||||||||
V10 | 2.4 | 3.2 | 7 | ||||||||||||
V12 | 2.4 | 3.2 | 8.5 | ||||||||||||
V14 | 3.2 | 10 | |||||||||||||
V16 | 3.2 | 4 | 4.8 | 11 | |||||||||||
V18 | 4.8 | 13 | |||||||||||||
V20 | 4.8 | 14 | |||||||||||||
V25 | 4.8 | 5.4 | 6 | 17.5 | |||||||||||
V32 | 6.3 | 6.9 | 22 |
T | Folha de cobre | ||||||||||||||
V | Ângulo | 0.6 | 0.8 | 1 | 1.2 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | Dimensão mínima | Nota |
90 | 3.6 | 5.2 | 6.8 | 8.4 | 28 | ||||||||||
120 | |||||||||||||||
150 |
Nota: (Para perfis em forma de C com uma espessura de 2,0, o coeficiente V12 é de 3,65, enquanto outros materiais de chapa de 2,0 têm um coeficiente de 3,5). O coeficiente de tolerância à flexão para chapas 2.0 com bainha é de 1,4.
MATERLAL | SPCC | SUS | LY12 | CCEE | ||||
T | ΔT | ΔK | ΔT | ΔK | ΔT | ΔK | ΔT | ΔK |
T=0.6 | 1.25 | 1.26 | ||||||
T=0.8 | 0.18 | 1.42 | 0.15 | 1.45 | 0.09 | 1.51 | ||
T=1.0 | 0.25 | 1.75 | 0.2 | 1.8 | 0.3 | 1.7 | 0.38 | 1.62 |
T=1.2 | 0.45 | 1.95 | 0.25 | 2.15 | 0.5 | 1.9 | 0.43 | 1.97 |
T=1.4 | 0.64 | 2.16 | ||||||
T=1.5 | 0.64 | 2.36 | 0.5 | 2.5 | 0.7 | 2.3 | ||
T=1.6 | 0.69 | 2.51 | ||||||
T=1.8 | 0.65 | 3 | ||||||
T=1.9 | 0.6 | 3.2 | ||||||
T=2.0 | 0.65 | 3.35 | 0.5 | 3.5 | 0.97 | 3.03 | 0.81 | 3.19 |
T=2.5 | 0.8 | 4.2 | 0.85 | 4.15 | 1.38 | 3.62 | ||
T=3.0 | 1 | 5 | 5.2 | 1.4 | 4.6 | |||
T=3.2 | 1.29 | 5.11 | ||||||
T=4.0 | 1.2 | 6.8 | 1 | 7 | ||||
T=5.0 | 2.2 | 7.8 | 2.2 | 7.8 | ||||
T=6.0 | 2.2 | 9.8 |
Espessura da folha de alumínio | Ângulo de flexão | Tolerância de dobragem |
AL-0.8 | 90 | 1.5 |
AL-1.0 | 90 | 1.5 |
45, 135 | 0.5 | |
AL-1.2 | 90 | 2.0 |
45, 135 | 0.5 | |
AL-1.5 | 90 | 2.5 |
45, 135 | 0.5 | |
60, 120 | 1.5 | |
AL-2.0 | 90 | 3.0 |
45, 135 | 1.0 | |
60, 120 | 2.5 | |
Ranhura de 90 graus | 1.5 | |
AL-2.5 | 90 | 4.0 |
45, 135 | 1.5 | |
60, 120 | 3.0 | |
Ranhura de 90 graus | 2.0 | |
AL-3.0 | 90 | 5.0 |
45, 135 | 3.0 | |
60, 120 | 4.5 | |
Ranhura de 90 graus | 2.5 |
1) A tabela de tolerâncias de dobragem é aplicável a processos de dobragem de chapas metálicas em que não é utilizada uma placa de pressão e a largura da placa é superior a três vezes a espessura.
2) Ao dobrar-se sobre um máquina de prensagemOs cálculos podem ser efectuados de acordo com este quadro.
3) De acordo com as dimensões marcadas no diagrama, a fórmula de cálculo para as dimensões desdobradas da peça dobrada é a seguinte
L = a + b + x
Nesta equação,
4) Devido aos inúmeros factores que afectam a dobragem de chapas metálicas, esta tabela de tolerâncias de dobragem para a dobragem de chapas metálicas deve ser utilizada apenas como referência.
Formação de curvas 0°L=A+B-0,43T, T=Espessura, Dedução=0,43T
Fórmula: L(comprimento não dobrado)=A(dimensão exterior)+B(dimensão exterior)-K(fator K)
A dobragem não 90° é efectuada de acordo com a camada neutra, a distância entre o lado neutro e o lado interior da folha é T/3, o R interior pode ser consultado na tabela acima.
A largura da matriz em V é 6-8 vezes a espessura da placa
Curva não 90° = 180°- Ângulo/90°*Dedução
A dedução é 1,8 vezes superior ao espessura da chapa de aço e 1,6 vezes a placa de alumínio.
Para placas inferiores a 2 mm, o fator K é de 0,432, R=espessura da placa, o tamanho do desdobramento pode ser preciso até 0,05.
Geralmente, ao conceber o chapa metálica partes, o mínimo interior R=espessura/2, se for inferior a isso, o ranhurar (V-cutting) será necessário para resolver o problema.
Ler mais: