Já se interrogou sobre a forma como as chapas metálicas são transformadas em formas complexas? A dedução de dobras, um conceito crucial no fabrico de chapas metálicas, é a chave. Nesta publicação do blogue, vamos mergulhar nos meandros da dedução de dobragem, explorando as suas fórmulas, calculadoras e aplicações práticas. Junte-se a nós enquanto desvendamos os segredos por trás da criação de componentes de chapa metálica precisos e bonitos.
Calculadoras relacionadas:
A dedução de dobragem é um conceito crucial no domínio do fabrico de chapas metálicas, particularmente no processo de dobragem. É normalmente referido como o "valor de recuo" e desempenha um papel significativo na determinação das dimensões exactas de uma peça dobrada.
A dedução de dobragem (BD) é o valor subtraído ao comprimento total da chapa plana para obter as dimensões finais pretendidas após a dobragem. É responsável pelo material que é deslocado durante o processo de quinagem.
Importância na dobragem de chapas metálicas
A dedução de dobragem é essencial para calcular com precisão o padrão plano de uma peça de chapa metálica antes de ser dobrada. Garante que as dimensões finais da peça dobrada correspondem às especificações do projeto. Sem ter em conta a dedução de curvatura, a peça pode acabar com dimensões incorrectas, levando a potenciais problemas de montagem e funcionalidade.
Vários factores podem influenciar o valor da dedução de dobragem, incluindo
Na prática, a dedução de curvatura é determinada através de dados empíricos, directrizes do fabricante ou software especializado que tem em conta as propriedades específicas do material e o processo de curvatura. Os cálculos exactos da dedução de curvatura são essenciais para garantir que o produto final cumpre os requisitos de conceção e funciona corretamente na aplicação pretendida.
A dedução de dobragem (BD) é um fator crítico no fabrico de chapas metálicas, utilizado para calcular o comprimento do padrão plano de uma peça de chapa metálica. É responsável pelo material que é deslocado durante o processo de dobragem. Este valor é essencial para garantir que as dimensões finais da peça dobrada são exactas.
A fórmula de dedução de dobragem é utilizada para determinar o comprimento plano de uma peça de chapa metálica antes de ser dobrada. A fórmula é a seguinte:
Lt=A+B-BD
Onde:
A dedução de dobragem no Solidworks só é utilizada para o cálculo de dobras de 90 graus em chapas metálicas.
No entanto, também pode ser utilizado para o cálculo do desdobramento de chapas metálicas sem 90 graus, mas o valor da dedução de flexão para a flexão sem 90 graus tem de ser utilizado de acordo com a tabela de coeficientes de flexão.
Cada fabricante tem uma tabela diferente e pode haver erros. Algumas fábricas de chapas metálicas podem não utilizar frequentemente a dobragem fora de 90 graus.
Hoje, vou partilhar o método de cálculo para a dedução de flexão de 90 graus que conheço.
A dedução de dobragem é um fator crucial no fabrico de chapas metálicas, particularmente quando se utilizam máquinas como travões de prensa. Representa a quantidade de material consumido durante o processo de quinagem. O cálculo exato das deduções de dobragem é essencial para obter dimensões precisas da peça e uma utilização eficiente do material. Este artigo aborda três métodos comuns para calcular as deduções de dobragem.
O método mais simples utiliza um fator de multiplicação baseado na espessura do material:
Este método é rápido e fácil, mas carece de precisão. É adequado para aplicações com requisitos de precisão mais baixos ou para estimativas iniciais.
Uma abordagem mais refinada desenvolvida pela indústria de chapas metálicas:
Dedução de flexão = 2 × espessura do material + 1/3 × espessura do material
Esta fórmula tem em conta o alongamento do material durante a flexão. É derivada de: Comprimento não dobrado = Comprimento A + Comprimento B - Dedução de flexão
Quando a dedução de flexão considera tanto a espessura do material como o alongamento.
Uma fórmula mais sofisticada derivada de estudos empíricos:
Dedução de flexão = 2 × t - (0,72t - 0,075V - 0,01)
Onde:
Esta fórmula tem em conta a influência da largura inferior da matriz na dedução da dobragem. É particularmente precisa para chapas de aço-carbono, mas tem mostrado bons resultados com outros materiais, como o alumínio, quando a largura da matriz é cerca de 4 vezes a espessura do material.
Considerações importantes
Conclusão
A escolha do método de cálculo da dedução de flexão adequado depende da precisão necessária, do tipo de material e da informação disponível sobre as ferramentas. Para trabalhos de alta precisão, recomenda-se a fórmula avançada (Método 3), enquanto os métodos mais simples podem ser úteis para estimativas rápidas ou aplicações menos críticas.
V | Largura da matriz w | Raio de curvatura | T | 30° | 45° | 60° | 90° | 120° | 150° | 180° | Camada exterior com dupla curvatura de 90° | Dimensão mínima de curvatura H | Dimensão mínima da curva em Z (Z) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8.0 | 12.0 | R1 | 0.6 | 0.2 | 0.5 | 0.9 | 1.0 | 0.7 | 0.2 | 0.3 | 1.9 | 6.0 | 10.0 |
0.8 | 0.3 | 0.6 | 1.0 | 1.6 | 0.8 | 0.3 | 0.4 | 2.2 | |||||
1 | 0.3 | 0.7 | 1.1 | 1.7 | 0.9 | 0.3 | 0.5 | 2.5 | |||||
1.2 | 0.4 | 0.8 | 1.3 | 2.2 | 1.1 | 0.4 | 0.6 | 2.8 | |||||
R2 | 0.6 | 0.2 | 0.5 | 0.9 | 1.6 | 0.7 | 0.2 | 0.3 | 1.9 | ||||
0.8 | 0.3 | 0.6 | 1.2 | 1.8 | 0.8 | 0.3 | 0.4 | 2.2 | |||||
1 | 0.3 | 0.7 | 1.2 | 2.0 | 0.9 | 0.3 | 0.5 | 2.5 | |||||
1.2 | 0.4 | 0.8 | 1.4 | 2.3 | 1.1 | 0.4 | 0.6 | 2.8 | |||||
10.0 | 14.0 | R1 | 1.5 | 0.7 | 1.2 | 1.6 | 2.5 | 1.3 | 0.5 | 0.7 | 3.2 | 7.0 | 11.0 |
R2 | 1.5 | 0.6 | 1.0 | 1.5 | 2.7 | 1.3 | 0.5 | 0.7 | 3.5 | ||||
12.0 | 16.0 | R1 | 2 | 0.6 | 1.3 | 2.0 | 3.4 | 1.7 | 0.6 | 0.9 | 4.4 | 8.5 | 13.0 |
R2 | 2 | 0.9 | 1.4 | 2.0 | 3.6 | 1.7 | 0.6 | 0.9 | 4.5 | ||||
16.0 | 26.0 | R1 | 2.5 | 0.7 | 1.5 | 2.4 | 4.3 | 2.2 | 0.8 | 1.1 | 5.6 | 12.0 | 20.0 |
3 | 0.8 | 1.7 | 2.8 | 5.1 | 2.8 | 0.8 | 1.3 | 5.8 | |||||
R2 | 2.5 | 0.8 | 1.6 | 2.5 | 4.8 | 2.3 | 0.9 | 1.1 | 6.2 | ||||
3 | 1.0 | 2.0 | 3.0 | 5.2 | 2.8 | 1.0 | 1.3 | 6.4 | |||||
22.0 | 32.5 | R1 | 4 | 1.0 | 2.4 | 3.5 | 6.5 | 3.3 | 1.1 | 16.0 | 26.0 | ||
R2 | 4 | 1.2 | 2.6 | 4.0 | 6.8 | 3.5 | 1.1 | ||||||
32.0 | 50.0 | R1 | 5 | 1.2 | 3.2 | 4.8 | 8.6 | 4.6 | 1.4 | 24.0 | 38.0 | ||
6 | 1.5 | 3.5 | 4.5 | 9.5 | 5.0 | 1.8 | |||||||
R2 | 5 | 1.5 | 3.4 | 5.0 | 8.8 | 4.5 | 1.6 | ||||||
6 | 1.8 | 3.8 | 5.5 | 9.8 | 5.2 | 2.0 |
Explicação:
Fórmula | 0.2t | 0.4t | 0.6t | 0.8t | 1.0t | 1.2t | 1.4t | 1.6t |
Ângulo | 155-165° | 145-155° | 135-145° | 125-135° | 115-125° | 105-115° | 95-105° | 85-95° |
Espessura (t) | 15-25° | 25-35° | 35-45° | 45-55° | 55-65° | 65-75° | 75-85° | |
0.5 | 0.10 | 0.20 | 0.30 | 0.40 | 0.50 | 0.60 | 0.70 | 0.80 |
0.6 | 0.12 | 0.24 | 0.36 | 0.48 | 0.60 | 0.72 | 0.84 | 0.96 |
0.8 | 0.16 | 0.32 | 0.48 | 0.64 | 0.80 | 0.96 | 1.12 | 1.28 |
1.0 | 0.20 | 0.40 | 0.60 | 0.80 | 1.00 | 1.20 | 1.40 | 1.60 |
1.2 | 0.24 | 0.48 | 0.72 | 0.96 | 1.20 | 1.44 | 1.68 | 1.92 |
1.5 | 0.30 | 0.60 | 0.90 | 1.20 | 1.50 | 1.80 | 2.10 | 2.40 |
2.0 | 0.40 | 0.80 | 1.20 | 1.60 | 2.00 | 2.40 | 2.80 | 3.20 |
2.5 | 0.50 | 1.00 | 1.50 | 2.00 | 2.50 | 3.00 | 3.50 | 4.00 |
3.0 | 0.60 | 1.20 | 1.80 | 2.40 | 3.00 | 3.60 | 4.20 | 4.80 |
4.0 | 0.80 | 1.60 | 2.40 | 3.20 | 4.00 | 4.80 | 5.60 | 6.40 |
4.5 | 0.90 | 1.80 | 2.70 | 3.60 | 4.50 | 5.40 | 6.30 | 7.20 |
5.0 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00 | 6.00 | 7.00 | 8.00 |
6.0 | 1.20 | 2.40 | 3.60 | 4.80 | 6.00 | 7.20 | 8.40 | 9.60 |
Fórmula | 0.3t | 0.5t | 0.7t | 0.9t | 1.1t | 1.3t | 1.5t | 1.7t |
Ângulo | 155-165° | 145-155° | 135-145° | 125-135° | 115-125° | 105-115° | 95-105° | 85-95° |
Espessura (t) | 15-25° | 25-35° | 35-45° | 45-55° | 55-65° | 65-75° | 75-85° | |
0.5 | 0.15 | 0.25 | 0.35 | 0.45 | 0.55 | 0.65 | 0.75 | 0.85 |
0.6 | 0.18 | 0.30 | 0.42 | 0.54 | 0.66 | 0.78 | 0.90 | 1.02 |
0.8 | 0.24 | 0.40 | 0.56 | 0.72 | 0.88 | 1.04 | 1.20 | 1.36 |
1.0 | 0.30 | 0.50 | 0.70 | 0.90 | 1.10 | 1.30 | 1.50 | 1.70 |
1.2 | 0.36 | 0.60 | 0.84 | 1.08 | 1.32 | 1.56 | 1.80 | 2.04 |
1.5 | 0.45 | 0.75 | 1.05 | 1.35 | 1.65 | 1.95 | 2.25 | 2.55 |
2.0 | 0.60 | 1.00 | 1.40 | 1.80 | 2.20 | 2.60 | 3.00 | 3.40 |
2.5 | 0.75 | 1.25 | 1.75 | 2.25 | 2.75 | 3.25 | 3.75 | 4.25 |
3.0 | 0.90 | 1.50 | 2.10 | 2.70 | 3.30 | 3.90 | 4.50 | 5.10 |
4.0 | 1.20 | 2.00 | 2.80 | 3.60 | 4.40 | 5.20 | 6.00 | 6.80 |
4.5 | 1.35 | 2.25 | 3.15 | 4.05 | 4.95 | 5.85 | 6.75 | 7.65 |
5.0 | 1.50 | 2.50 | 3.50 | 4.50 | 5.50 | 6.50 | 7.50 | 8.50 |
6.0 | 1.80 | 3.00 | 4.20 | 5.40 | 6.60 | 7.80 | 9.00 | 10.20 |
Não. | Ângulo /Espessura | 0.8 | 1.0 | 1.2 | 1.5 | 2.0 | 2.5 | 3.0 | 4.0 | 5.0 |
1 | 0 | 3.00 | 3.60 | 4.00 | 5.00 | 7.00 | 8.40 | 10.00 | 14.00 | 20.00 |
2 | 5 | 2.92 | 3.50 | 3.89 | 4.86 | 6.81 | 8.17 | 9.72 | 13.61 | 19.44 |
3 | 10 | 2.83 | 3.40 | 3.78 | 4.72 | 6.61 | 7.93 | 9.44 | 13.22 | 18.89 |
4 | 15 | 2.75 | 3.30 | 3.67 | 4.58 | 6.42 | 7.70 | 9.17 | 12.83 | 18.33 |
5 | 20 | 2.67 | 3.20 | 3.56 | 4.44 | 6.22 | 7.47 | 8.89 | 12.44 | 17.78 |
6 | 25 | 2.58 | 3.10 | 3.44 | 4.31 | 6.03 | 7.23 | 8.61 | 12.06 | 17.22 |
7 | 30 | 2.50 | 3.00 | 3.33 | 4.17 | 5.83 | 7.00 | 8.33 | 11.67 | 16.67 |
8 | 35 | 2.42 | 2.90 | 3.22 | 4.03 | 5.64 | 6.77 | 8.06 | 11.28 | 16.11 |
9 | 40 | 2.33 | 2.80 | 3.11 | 3.89 | 5.44 | 6.53 | 7.78 | 10.89 | 15.56 |
10 | 45 | 2.25 | 2.70 | 3.00 | 3.75 | 5.25 | 6.30 | 7.50 | 10.50 | 15.00 |
11 | 50 | 2.17 | 2.60 | 2.89 | 3.61 | 5.06 | 6.07 | 7.22 | 10.11 | 14.44 |
12 | 55 | 2.08 | 2.50 | 2.78 | 3.47 | 4.86 | 5.83 | 6.94 | 9.72 | 13.89 |
13 | 60 | 2.00 | 2.40 | 2.67 | 3.33 | 4.67 | 5.60 | 6.67 | 9.33 | 13.33 |
14 | 65 | 1.92 | 2.30 | 2.56 | 3.19 | 4.47 | 5.37 | 6.39 | 8.94 | 12.78 |
15 | 70 | 1.83 | 2.20 | 2.44 | 3.06 | 4.28 | 5.13 | 6.11 | 8.56 | 12.22 |
16 | 75 | 1.75 | 2.10 | 2.33 | 2.92 | 4.08 | 4.90 | 5.83 | 8.17 | 11.67 |
17 | 80 | 1.67 | 2.00 | 2.22 | 2.78 | 3.89 | 4.67 | 5.56 | 7.78 | 11.11 |
18 | 85 | 1.58 | 1.90 | 2.11 | 2.64 | 3.69 | 4.43 | 5.28 | 7.39 | 10.56 |
19 | 90 | 1.50 | 1.80 | 2.00 | 2.50 | 3.50 | 4.20 | 5.00 | 7.00 | 10.00 |
20 | 95 | 1.42 | 1.70 | 1.89 | 2.36 | 3.31 | 3.97 | 4.72 | 6.61 | 9.44 |
21 | 100 | 1.33 | 1.60 | 1.78 | 2.22 | 3.11 | 3.73 | 4.44 | 6.22 | 8.89 |
22 | 105 | 1.25 | 1.50 | 1.67 | 2.08 | 2.92 | 3.50 | 4.17 | 5.83 | 8.33 |
23 | 110 | 1.17 | 1.40 | 1.56 | 1.94 | 2.72 | 3.27 | 3.89 | 5.44 | 7.78 |
24 | 115 | 1.08 | 1.30 | 1.44 | 1.81 | 2.53 | 3.03 | 3.61 | 5.06 | 7.22 |
25 | 120 | 1.00 | 1.20 | 1.33 | 1.67 | 2.33 | 2.80 | 3.33 | 4.67 | 6.67 |
26 | 125 | 0.92 | 1.10 | 1.22 | 1.53 | 2.14 | 2.57 | 3.06 | 4.28 | 6.11 |
27 | 130 | 0.83 | 1.00 | 1.11 | 1.39 | 1.94 | 2.33 | 2.78 | 3.89 | 5.56 |
28 | 135 | 0.75 | 0.90 | 1.00 | 1.25 | 1.75 | 2.10 | 2.50 | 3.50 | 5.00 |
29 | 140 | 0.67 | 0.80 | 0.89 | 1.11 | 1.56 | 1.87 | 2.22 | 3.11 | 4.44 |
30 | 145 | 0.58 | 0.70 | 0.78 | 0.97 | 1.36 | 1.63 | 1.94 | 2.72 | 3.89 |
31 | 150 | 0.50 | 0.60 | 0.67 | 0.83 | 1.17 | 1.40 | 1.67 | 2.33 | 3.33 |
32 | 155 | 0.42 | 0.50 | 0.56 | 0.69 | 0.97 | 1.17 | 1.39 | 1.94 | 2.78 |
33 | 160 | 0.33 | 0.40 | 0.44 | 0.56 | 0.78 | 0.93 | 1.11 | 1.56 | 2.22 |
34 | 165 | 0.25 | 0.30 | 0.33 | 0.42 | 0.58 | 0.70 | 0.83 | 1.17 | 1.67 |
35 | 170 | 0.17 | 0.20 | 0.22 | 0.28 | 0.39 | 0.47 | 0.56 | 0.78 | 1.11 |
36 | 175 | 0.08 | 0.10 | 0.11 | 0.14 | 0.19 | 0.23 | 0.28 | 0.39 | 0.56 |
37 | 180 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
1) A tabela de dedução de dobragem é aplicável a processos de dobragem de chapas metálicas em que não é utilizada uma placa de prensagem e a largura da chapa é superior a três vezes a espessura (t).
2) Ao dobrar na máquina de dobragem, os cálculos podem ser efectuados de acordo com esta tabela.
3) De acordo com as dimensões indicadas no diagrama, a fórmula de cálculo para o tamanho desdobrado da peça de trabalho dobrada é a seguinte:
L=a+b-y
Onde:
4) Devido aos inúmeros factores que influenciam a dobragem de chapas metálicas, esta tabela de valores de dedução de dobragem de chapas metálicas é fornecida apenas para referência.
A precisão dimensional das peças dobradas está relacionada com a precisão posicional do calibre traseiro da prensa dobradeira e com a precisão da folha máquina de corte de metal. A utilização de máquinas fiáveis para os processos de corte e dobragem pode resolver estes problemas.
Um fator crítico que afecta a precisão dimensional das peças de trabalho dobradas é a precisão do desenvolvimento do padrão plano da chapa metálica. Quando uma chapa plana é dobrada numa peça de trabalho com um ângulo específico, a medição das dimensões da peça de trabalho dobrada revela que estas não são iguais às dimensões da chapa plana, como mostra a ilustração.
Esta discrepância é conhecida como dedução de dobragem.
Se a dedução da dobragem for imprecisa, o tamanho do padrão plano será impreciso e, independentemente da precisão das operações subsequentes, a peça final não cumprirá a precisão dimensional exigida.
A dedução da flexão é complexa e um método rudimentar consiste em utilizar simplesmente o dobro da espessura do material.
No entanto, esta abordagem é bastante rudimentar. Um método mais refinado consiste em aplicar a teoria do eixo neutro da norma DIN 6935, que consiste em calcular um fator "k" e combiná-lo com a espessura e o ângulo da chapa a dobrar.
Esta fórmula permite obter uma dedução de flexão mais exacta. No entanto, mesmo as deduções de flexão calculadas de acordo com a teoria do eixo neutro da norma DIN 6935 podem não ser suficientemente precisas, uma vez que as deduções efectivas também dependem das características do material, da espessura, da ângulo de flexãoe as ferramentas utilizadas.
Diferentes materiais, espessuras e métodos de cálculo produzem diferentes deduções de flexão, como mostra a tabela abaixo.
Tabela Valor de dedução para dimensões de flexão correspondentes a diferentes materiais, espessuras e métodos
Espessura da placa S/mm | Morrer | Material | -S × 2 | DIN6935 | Base de dados |
1.5 | V12/78 | DC04 | -3.00 | -3.00 | -2.90 |
1.5 | V08/78 | DC04 | -3.00 | -2.80 | -2.70 |
1.5 | V1278 | X5CrNi1810 | -3.00 | -3.00 | -3.10 |
4 | V24/78 | S235JRG2 | -8.00 | -7.60 | -7.09 |
4 | V30/78 | S235JRG2 | -8.00 | -7.57 | -7.26 |
4 | V24/78 | X5CrNi1810 | -8.00 | -8.01 | -7.57 |
4 | V30/78 | X5CrNi1810 | -8.00 | -7.90 | -8.01 |
6 | V30/78 | S235JRG2 | -12.00 | -11.20 | -10.35 |
6 | V4078 | S235JRG2 | -12.00 | -11.60 | -10.62 |
6 | V30/78 | X5CrNi1810 | -12.00 | -11.20 | -10.89 |
6 | V4078 | X5CrNi1810 | -12.00 | -11.60 | -11.60 |
Por exemplo, para uma placa S235JRG2 com 4 mm de espessura, utilizando um molde inferior V30, a dedução de flexão varia consoante o método: o dobro da espessura do material resulta em 8 mm, a fórmula DIN 6935 produz 7,57 mm e o valor empírico da base de dados dá 7,26 mm.
Existem discrepâncias entre os métodos, que se tornam ainda mais significativas quando as peças de trabalho requerem múltiplas curvas, levando a maiores desvios acumulados. Os valores empíricos da base de dados são derivados de testes práticos extensivos e são armazenados na base de dados, proporcionando a máxima precisão.