Liga de alumínio fundido: Características, propriedades e muito mais

Já alguma vez se interrogou sobre o que torna as peças do motor do seu automóvel tão duráveis e eficientes? Este artigo revela os segredos por detrás da fundição de ligas de alumínio, os campeões desconhecidos da engenharia automóvel. Saiba como estas ligas, com as suas propriedades e classificações únicas, moldam o futuro do fabrico e do desempenho dos veículos. Prepare-se para explorar o fascinante mundo das ligas de alumínio!

Índice

As ligas de alumínio que podem ser obtidas diretamente através de processos de fundição de metais, fundições de ligas de alumínio. O teor de elementos de liga nessas ligas é geralmente superior ao das ligas de alumínio forjado correspondentes.

As ligas de alumínio fundido têm o mesmo sistema de liga que as ligas de alumínio forjado, com os mesmos mecanismos de reforço (exceto o endurecimento por deformação). A sua principal diferença reside no facto de o teor máximo do elemento de liga silício nas ligas de alumínio fundido ser superior ao da maioria das ligas de alumínio forjado.

Para além de conterem elementos de reforço, as ligas de alumínio para fundição também têm de conter uma quantidade suficiente de elementos eutécticos (normalmente silício) para dar à liga uma fluidez considerável, facilitando o preenchimento das lacunas de retração durante a fundição. As ligas de alumínio para fundição são amplamente utilizadas em automóveis, tais como cabeças de cilindros de motores, colectores de admissão, pistões, cubos e caixas de direção assistida.

I. Classificação e códigos das ligas

(1) Classificação das ligas

Divididos em quatro categorias com base nos principais elementos da composição, para além do alumínio: silício, cobre, magnésio e zinco.

1. Liga de alumínio-silício

Também conhecido como "silumin" ou "silício-alumínio". Tem um bom desempenho de fundição e resistência ao desgaste, um pequeno coeficiente de expansão térmica, e é a liga mais variada e amplamente utilizada na fundição de ligas de alumínio, contendo 10% a 25% de silício.

As ligas de silício-alumínio, por vezes com a adição de 0,2% a 0,6% de magnésio, são amplamente utilizadas em peças estruturais, tais como cascas, corpos de cilindros, caixas e quadros. Por vezes, a adição de uma quantidade adequada de cobre e magnésio pode melhorar as propriedades mecânicas e a resistência ao calor da liga. Este tipo de liga é muito utilizado no fabrico de componentes como os pistões.

2. Liga de alumínio-cobre

As ligas que contêm 4,5% a 5,3% de cobre têm o melhor efeito de reforço, e a adição adequada de manganês e titânio pode melhorar significativamente a temperatura ambiente, a resistência a altas temperaturas e o desempenho da fundição. Utilizado principalmente para fazer peças fundidas em areia que suportam grandes cargas dinâmicas e estáticas e têm formas simples.

3. Liga de alumínio-magnésio

A liga de alumínio fundido com a menor densidade (2,55g/cm³) e a maior resistência (cerca de 355MPa) contém magnésio 12% para o melhor efeito de reforço. A liga tem uma boa resistência à corrosão na atmosfera e na água do mar, boas propriedades mecânicas globais e maquinabilidade à temperatura ambiente, e pode ser utilizada para peças como bases de radar, motores de aeronaves, hélices, trens de aterragem, bem como materiais decorativos.

4. Liga de alumínio-zinco

Para melhorar o desempenho, são frequentemente adicionados elementos de silício e magnésio, normalmente designados por "zinco-silumin". Em condições de fundição, a liga tem um efeito de arrefecimento, ou seja, "auto-refrigeração". Pode ser utilizada sem tratamento térmico, e as peças fundidas têm maior resistência após a modificação do tratamento térmico. Após o tratamento de estabilização, as dimensões são estáveis, normalmente utilizadas para fazer modelos, gabaritos e suportes de equipamento.

(2) Códigos de liga

Os códigos das ligas são compostos pelas letras chinesas pinyin "ZL", que representam o alumínio fundido, seguidas de três algarismos árabes.

O primeiro número a seguir a "ZL" indica a série de ligas, sendo que 1, 2, 3 e 4 representam, respetivamente, as séries de ligas de alumínio-silício, alumínio-cobre, alumínio-magnésio e alumínio-zinco.

O segundo e terceiro algarismos após "ZL" indicam o número de sequência da liga.

As ligas de alta qualidade são assinaladas com um "A" a seguir ao seu código.

Tipos de ligasSistema Al-Si Sistema Al-CuSistema Al-Mg Sistema Al-Zn
Designações de ligasZL1XXZL2XXZL3XXZL4XX

II. Métodos de fundição de ligas e códigos de tratamento de modificação

CódigoTítuloCódigoTítulo
SFundição em areiaKFundição por moldagem de conchas
JFundição injectadaYFundição injectada sob pressão
RFundição por cera perdidaBTratamento térmico

III. Características, tipos e estado do tratamento térmico da liga tripla

A fim de obter peças fundidas de precisão de alta qualidade com várias formas e especificações, as ligas de alumínio utilizadas para fundição têm geralmente as seguintes características.

1. Boa fluidez para o preenchimento de ranhuras e fendas estreitas

2. Ponto de fusão inferior ao dos metais em geral, mas pode satisfazer os requisitos da maioria das situações

3. Boa condutividade térmica, o calor do alumínio fundido pode ser rapidamente transferido para o molde, resultando num ciclo de fundição mais curto

4. O hidrogénio e outros gases nocivos presentes na massa fundida podem ser eficazmente controlados através de tratamento

5. Ao fundir ligas de alumínio, não há tendência para fissuras e rasgões por fragilidade a quente

6. Boa estabilidade química, forte resistência à corrosão

7. Não são propensas a defeitos de superfície, as peças fundidas têm uma boa suavidade e brilho de superfície e são fáceis de submeter a tratamento de superfície

8. A processabilidade das ligas de alumínio fundido é boa, podem ser fundidas utilizando fundição sob pressão, molde permanente, moldes de areia verde e areia seca, moldes de fundição de gesso de espuma perdida, e também podem ser formadas utilizando fundição a vácuo, fundição a baixa pressão e alta pressão, fundição por compressão, fundição semi-sólida, fundição centrífuga, etc., para produzir várias peças fundidas de diferentes utilizações, variedades, especificações e desempenhos.

Tratamento térmico Código de condiçãoCategorias de condições de tratamento térmicoCaracterísticas
FEstado de conservação--
T1Envelhecimento artificialPara moldes de areia húmida, moldes de metal e, em particular, peças fundidas sob pressão, são notados efeitos de solução sólida parcial devido à rápida velocidade de arrefecimento. O tratamento de envelhecimento pode aumentar resistência e durezae melhorar a maquinabilidade.
T2RecozimentoEliminar a tensão gerada no processo de fundição para aumentar a estabilidade dimensional e melhorar a plasticidade da liga.
T4Tratamento térmico de solução com envelhecimento naturalAo implementar o reforço da solução através do aquecimento, isolamento e arrefecimento rápido, podemos melhorar as propriedades mecânicas das ligas, melhorando particularmente a ductilidade da liga e a sua resistência à corrosão em condições de temperatura ambiente.
T5Tratamento térmico de solução com envelhecimento artificial parcialApós o tratamento por solução, é efectuado um processo de envelhecimento artificial incompleto, que é conduzido a temperaturas mais baixas ou durante períodos mais curtos. O objetivo é aumentar ainda mais a resistência e a dureza da liga.
T6Tratamento térmico de solução com envelhecimento artificial completoA maior resistência à tração pode ser alcançada, embora à custa de uma ductilidade reduzida. O envelhecimento é efectuado a temperaturas elevadas ou durante um período de tempo prolongado.
T7Tratamento térmico de solução com tratamento de estabilizaçãoAumenta a estabilidade estrutural e dimensional das peças fundidas, bem como a resistência à corrosão da liga. Utilizado principalmente para componentes que operam a temperaturas elevadas, a temperatura do tratamento de estabilização pode aproximar-se da temperatura de trabalho da peça fundida.
T8Tratamento térmico de solução com tratamento de amolecimentoApós o tratamento da solução, obtêm-se peças fundidas com elevada plasticidade e excelente estabilidade dimensional, utilizando temperaturas acima do tratamento de estabilização.
T9Tratamento do ciclo frio e quenteEliminar totalmente tensão interna em peças fundidas e estabilizar as dimensões. Utilizado para peças fundidas de alta precisão.

IV. Tipos de ligas de alumínio fundido

ZL101

O ZL101 é conhecido pela sua composição simples, fácil fusão e fundição, bom desempenho de fundição, boa estanquidade ao ar e relativamente bom desempenho de processamento de soldadura e corte, mas as suas propriedades mecânicas não são elevadas.

É adequado para a fundição de várias peças com paredes finas e grandes áreas, formas complexase requisitos de baixa resistência, tais como caixas de bombas, caixas de velocidades, carcaças de instrumentos (quadros) e peças de electrodomésticos. É produzido principalmente por fundição em areia e fundição de metal.

Zl101A

A adição de uma pequena quantidade de Ti à ZL101 refina o grão e reforça a estrutura da liga, resultando em propriedades abrangentes que são superiores às da ZL101 e ZL102, bem como uma boa resistência à corrosão.

Pode ser utilizado como peças fundidas de alta qualidade para componentes estruturais de suporte de carga geral em engenharia, bem como vários componentes estruturais em motociclos, automóveis, electrodomésticos e produtos para instrumentos. Atualmente, a sua utilização só perde para o ZL102. A fundição em areia e a fundição em metal são normalmente utilizadas para a produção.

Zl102

A principal caraterística desta liga é a boa fluidez, com outras propriedades semelhantes à ZL101, mas com melhor estanquidade ao ar do que a ZL101.

Pode ser utilizada para fundir várias peças fundidas sob pressão de paredes finas de forma complexa e peças metálicas ou fundidas em areia de paredes finas de baixa resistência, de grande área e de forma complexa. Quer se trate de uma fundição sob pressão ou de uma fundição em metal/areia, é a liga de alumínio mais utilizada em produtos civis.

Zl104

Devido ao seu grande número de cristais de trabalho e à adição de Mn, que neutraliza os efeitos nocivos do Fe misturado no material, esta liga tem um bom desempenho de fundição, excelente estanquidade ao ar, resistência à corrosão e um desempenho relativamente bom no processamento de soldadura e corte.

No entanto, a sua resistência ao calor é fraca.

É adequado para produzir peças estruturais dinâmicas de forma complexa e de grandes dimensões com grandes cargas, tais como caixas de turbocompressores, cabeças de cilindro, camisas de cilindro e outras peças. É produzido principalmente por fundição sob pressão, mas a fundição em areia e a fundição de metal também são normalmente utilizadas.

Zl105, ZL105A

Devido à adição de Cu e à redução do teor de Si, o desempenho desta liga em termos de fundição e soldadura é pior do que o da ZL104, mas a sua resistência à temperatura ambiente e a altas temperaturas e o seu desempenho no processamento de corte são melhores do que os da ZL104, com uma plasticidade ligeiramente inferior e uma menor resistência à corrosão.

É adequado para utilização como componentes estruturais dinâmicos de forma complexa, de grandes dimensões e com cargas pesadas, tais como caixas de turbocompressores, cabeças de cilindro, camisas de cilindro e outras peças.

O ZL105A reduz o teor de Fe do elemento de impureza do ZL105 e aumenta a resistência da liga, resultando em melhores propriedades mecânicas do que o ZL105. As peças fundidas de alta qualidade são normalmente utilizadas na produção.

ZL106

A adição de uma pequena quantidade de Ti e Mn, bem como um aumento do teor de Si, melhora o desempenho de fundição e de alta temperatura desta liga, tornando-a melhor do que a ZL105 em termos de estanquidade ao ar e resistência à corrosão.

Pode ser utilizado como componentes estruturais para cargas gerais e peças que requerem uma boa estanquidade ao ar e funcionam a temperaturas mais elevadas. A fundição em areia e a fundição em metal são principalmente utilizadas para a produção.

ZL107

ZL107 tem excelente desempenho de fundição e estanquidade ao ar, boas propriedades mecânicas, desempenho médio de processamento de soldadura e corte, e resistência à corrosão ligeiramente inferior.

É adequado para a produção de componentes estruturais que resistem a condições dinâmicas gerais ou cargas estáticas e peças que requerem estanquidade ao ar. A fundição em areia é normalmente utilizada para a produção.

ZL108

Devido ao seu alto teor de Si e à adição de Mg, Cu e Mn, o ZL108 tem um excelente desempenho de fundição, um pequeno coeficiente de expansão térmica, boa resistência ao desgaste, alta resistência e boa resistência ao calor. No entanto, tem uma resistência à corrosão ligeiramente inferior.

É adequado para a produção de pistões para motores de combustão interna e outras peças que requerem resistência ao desgaste, bem como peças que requerem dimensões e volume estáveis. É produzido principalmente por fundição sob pressão e fundição em metal, mas também pode ser utilizado fundição em areia.

ZL109

Trata-se de uma liga complexa de Al-Si-Cu-Mg-Ni, com um teor acrescido de Si e a adição de Ni para proporcionar um excelente desempenho de fundição e estanquidade ao ar, bem como resistência a altas temperaturas, melhor resistência ao desgaste e resistência à corrosão. O coeficiente de expansão linear e a densidade também são significativamente reduzidos.

É adequado para a produção de pistões para motores de combustão interna e peças que requerem resistência ao desgaste e dimensões e volume estáveis. A fundição em metal e a fundição em areia são principalmente utilizadas para a produção.

ZL111

O ZL111 é uma liga complexa com a adição de Mn e Ti, proporcionando um excelente desempenho de fundição, boa resistência à corrosão, estanquidade ao ar e elevada resistência. O seu desempenho no processamento de soldadura e corte é médio.

É adequado para a fundição de componentes estruturais dinâmicos com formas complexas e com cargas pesadas (tais como componentes de motores de aeronaves, bombas de água, bombas de óleo, impulsores, etc.) e peças que requerem uma boa estanquidade ao ar e trabalham a temperaturas mais elevadas. A fundição de metais e a fundição em areia são principalmente utilizadas para a produção, mas a fundição sob pressão também pode ser utilizada.

ZL114A

O ZL114A é uma liga complexa com a adição de Mn e Ti, proporcionando um excelente desempenho de fundição, boa resistência à corrosão, estanquidade ao ar e elevada resistência. O seu desempenho no processamento de soldadura e corte é médio.

É adequado para a fundição de componentes estruturais dinâmicos com formas complexas e com cargas pesadas (tais como componentes de motores de aeronaves, bombas de água, bombas de óleo, impulsores, etc.) e peças que requerem uma boa estanquidade ao ar e trabalham a temperaturas mais elevadas. A fundição de metais e a fundição em areia são principalmente utilizadas para a produção, mas a fundição sob pressão também pode ser utilizada.

ZL115

O ZL115 tem um bom desempenho de fundição e elevadas propriedades mecânicas, sendo principalmente utilizado como componentes estruturais de engenharia pesada e outras peças, como caixas de válvulas e impulsores. A fundição em areia e a fundição em metal são principalmente utilizadas para a produção.

ZL116

A ZL116 é uma liga complexa de Al-Cu-Mg com a remoção de Zn e Sb da ZL115 e a adição de oligoelementos Ti e Be. O grão da liga é refinado e os efeitos nocivos das impurezas de Fe são reduzidos, proporcionando um bom desempenho de fundição e de estanquidade ao ar, bem como elevadas propriedades mecânicas.

É adequado para a fundição de componentes estruturais dinâmicos que suportam grandes cargas, tais como peças em aviões e mísseis, e várias peças com boas propriedades abrangentes em produtos civis. A fundição em areia e a fundição em metal são principalmente utilizadas para a produção.

ZL117

O ZL117 é uma liga complexa de Al-Cu-Mg com uma estrutura hipereutéctica e um elevado teor de Si de 19-22%, com a adição de oligoelementos Mn e de elementos de terras raras RE. Tem um excelente desempenho de fundição, boa resistência à temperatura ambiente e a altas temperaturas, baixo coeficiente de expansão térmica e é um material resistente ao desgaste de alto nível, constituído por muitas partículas primárias duras de Si distribuídas numa matriz macia.

É adequado para a fundição de pistões para motores de combustão interna, pastilhas de travão e outras peças resistentes ao desgaste com dimensões e volume estáveis, bem como componentes estruturais de alta resistência. A fundição de metal é utilizada principalmente para a produção, mas a fundição em areia também pode ser utilizada.

Além disso, a Aviation Industry Corporation of China também desenvolveu três ligas de alumínio-silício (ZL112Y, ZL113Y e ZL117Y). ZL112Y e ZL113Y são ligas de fundição injectada Al-Si-Cu, ambas com bom desempenho de fundição, estanquidade ao ar e elevadas propriedades mecânicas, adequadas para peças de fundição que requerem elevada resistência e temperaturas de trabalho e boa estanquidade ao ar, bem como outras peças resistentes ao desgaste, como pistões com dimensões e volume estáveis e bom desempenho de transferência de calor.

A fundição sob pressão é utilizada principalmente para a produção, mas a fundição em areia e a fundição em metal também podem ser utilizadas. Ao contrário do ZL108, o teor de Si é reduzido e o teor de Cu, que melhora o reforço da solução sólida e o endurecimento por precipitação, é aumentado, resultando num melhor desempenho à temperatura ambiente e a altas temperaturas do que o ZL108.

ZL201

O ZL201 tem boas propriedades mecânicas à temperatura ambiente e a altas temperaturas, plasticidade moderada, desempenho médio de processamento de soldadura e corte, fraca fluidez com tendência para fissuração a quente e fraca resistência à corrosão.

É adequado para fundir componentes estruturais que funcionam a temperaturas relativamente altas (200-300 ℃) ou peças que suportam grandes cargas dinâmicas ou estáticas à temperatura ambiente, bem como peças que funcionam a baixas temperaturas (-70 ℃). A fundição em areia é usada principalmente para produção.

ZL201A

O ZL201A reduz consideravelmente o teor de impurezas Fe e Si em comparação com o ZL201, resultando em propriedades mecânicas mais elevadas à temperatura ambiente e a altas temperaturas. Tem um bom desempenho de corte e soldadura, mas um fraco desempenho de fundição.

Pode ser usado para peças que funcionam a 300 ℃ ou suportam grandes cargas dinâmicas ou estáticas à temperatura ambiente. A fundição em areia é usada principalmente para produção.

ZL202

O ZL202 tem um desempenho de fundição relativamente bom e resistência a altas temperaturas, dureza e resistência ao desgaste, mas uma fraca resistência à corrosão.

É adequado para peças de fundição que funcionam a uma temperatura de 250 ℃ e suportam pequenas cargas, como cabeças de cilindro. A fundição em areia e a fundição de metal são usadas principalmente para a produção.

ZL203

O ZL203 tem um teor mais baixo de Si, o que resulta numa fluidez ligeiramente inferior, maior tendência para fissuração a quente e menor resistência à corrosão. No entanto, tem um bom desempenho em termos de resistência a altas temperaturas, soldadura e processamento de corte.

É adequado para peças de fundição que funcionam a uma temperatura abaixo de 250 ℃ e suportam pequenas cargas ou peças que suportam grandes cargas à temperatura ambiente, como peças de instrumentos e corpos do cárter. A fundição em areia e a fundição de baixa pressão são usadas principalmente para a produção.

ZL204A

ZL204A é uma liga de Al-Cu fundida de alta pureza e alta resistência, com boa plasticidade e desempenho no processamento de soldadura e corte, mas com fraco desempenho na fundição.

É adequado para a fundição de componentes estruturais que suportam grandes cargas, tais como bases de apoio e braços de apoio. A fundição em areia e a fundição a baixa pressão são principalmente utilizadas para a produção.

ZL205A

A ZL205A é atualmente a liga de alumínio mais forte em utilização no mundo. Tem boa plasticidade e resistência à corrosão, excelente desempenho de corte e soldadura, mas fraco desempenho de fundição.

É adequado para a fundição de componentes estruturais que suportam grandes cargas e algumas peças com baixos requisitos de estanquidade ao ar. Pode ser utilizada a fundição em areia, a fundição a baixa pressão e a fundição de metal.

ZL207

O ZL207 tem uma resistência muito elevada a altas temperaturas com um desempenho médio de fundição, desempenho de processamento de soldadura e corte, e baixa resistência à temperatura ambiente.

É adequado para fundir vários componentes estruturais que funcionam abaixo de 400 ℃, como carcaças de válvulas em motores de aeronaves e alguns componentes resistentes ao calor na indústria do petróleo. A fundição em areia e a fundição a baixa pressão são usadas principalmente para a produção.

ZL209

O ZL209 tem maior resistência à tração, ponto de escoamento e resistência a altas temperaturas do que o ZL201A, com bom desempenho no processamento de soldadura e corte, mas fraco desempenho de fundição e alongamento.

É adequada para a fundição de vários componentes resistentes ao desgaste que funcionam a temperaturas mais elevadas, como as peças dos motores de combustão interna. A fundição em areia é utilizada principalmente para a produção.

ZL301

A ZL301 é a liga de alumínio mais resistente à corrosão atualmente disponível, com bom desempenho de processamento de corte, desempenho de soldadura relativamente bom, alta resistência, bom desempenho de anodização, mas complexo processo de fundiçãoA utilização é complicada e fácil de produzir defeitos, tais como folgas e fissuras a quente.

É adequado para fundir várias peças com grandes cargas em meios corrosivos, como água do mar trabalhando a uma temperatura de 150 ℃, como vários componentes em embarcações marítimas, carcaças de bombas, impulsores, estruturas na indústria de petróleo. A fundição em areia é usada principalmente para produção.

ZL303

O ZL303 tem melhor resistência a altas temperaturas do que o ZL301, boa resistência à corrosão (ligeiramente pior do que o ZL301), excelente desempenho no processamento de corte, bom desempenho de soldadura, melhor desempenho de fundição do que o ZL301, não pode ser tratado termicamente, resultando em propriedades mecânicas muito inferiores às do ZL301.

É adequado para a fundição de peças como motores de aviões, mísseis, motores de combustão interna, bombas químicas, bombas de óleo, caixas de bombas de gás petroquímicas, rotores, lâminas que suportam cargas médias em meios corrosivos como a água do mar, a indústria química e o gás. Fundição sob pressão e a fundição em areia são principalmente utilizadas.

ZL305

O ZL305 tem um melhor desempenho de fundição e um tecido mais estável após o envelhecimento natural do que o ZL301 e o ZL303, devido à adição de Zn e à redução do teor de Mg. A tendência para formar folgas e fissuras a quente é reduzida devido à adição de oligoelementos Ti e Be, o que resulta em boas propriedades globais e numa forte resistência à corrosão sob tensão.

No entanto, suas propriedades mecânicas em altas temperaturas são ruins. É adequado para peças de fundição que suportam grandes cargas e trabalham em meios corrosivos, como água do mar, produtos químicos e gás abaixo de 100 ℃, como aeronaves, motores de combustão interna, bombas químicas, bombas de óleo, carcaças de bombas de gás petroquímico, rotores, lâminas. A fundição em areia é usada principalmente para produção.

ZL401

O ZL401 tem um excelente desempenho de fundição, uma pequena tendência para a contração e a fissuração a quente, elevadas propriedades mecânicas, bom desempenho de processamento de soldadura e corte, mas elevada gravidade específica, baixa plasticidade e fraca resistência à corrosão.

É usado principalmente para fundição sob pressão e moldes de fundição, modelos e componentes estruturais em aeronaves, motores de combustão interna, veículos e outros produtos que funcionam a temperaturas não superiores a 200 ℃ e suportam cargas médias. Fundição sob pressão, fundição em areia e fundição de metal podem ser usadas.

5. Composição química de Ligas de alumínio para fundição injectada

 Série AlloyPaísGrau da ligaWB/%Especificações padrão 
SiCuMgFeAl
Série AI-SiChinaYL10210.0-13.0<0.6<0.05<1.2SubsídioGB/T15115-94
JapãoADC111.0-13.0<1.0<0.30<1.2JISH5302-82
América41311.0-13.0<1.0<0.35<2.0ASTMB85-82
RússiaAJ1210.0-13.0<0.6<0.10<1.5TOCT2685-82
AlemanhaAlSil211.0-13.5<0.10<0.05<1.0DIN1725
Série AI-Si-MgChinaYL1048.0-10.5<0.300.17-0.30<1.0SubsídioGB/T15115-94
JapãoADC39.0-10.0<0.600.40-0.60<1.3JISH5302-82
América3609.0-10.0<0.600.40-0.60<2.0ASTMB85-82
RússiaAJl48.0-10.5<0.100.17-0.30<1.0TOCT2685-82
AlemanhaAlSil0Mg9.0-11.0<0.100.20-0.50<1.0DIN1725
AI-Si-CuseriesChinaYL1127.5-9.53.0-4.0<0.30<1.2SubsídioGB/T15115-94
YL1139.6-12.01.5-3.5<0.30<1.2
JapãoADC107.5-9.52.0-4.0<0.30<1.3JISH5302-82
ADC129.6-12.01.5-3.5<0.30<1.3
América3807.5-9.53.0-4.0<0.10<1.3ASTMB85-82
3839.5-11.52.0-3.0<0.10<1.3
RússiaAJl64.5-6.02.0-3.0<0.10<1.5TOCT2685-82
AlemanhaAlSi8Cu37.5-9.52.0-3.5<0.30<1.3DIN1725
Série AI-MgChinaYL3020.80-1.30<0.104.5-5.5<1.2SubsídioGB/T15115-94
JapãoADC5<0.30<0.204.0-8.5<1.8JISH5302-82
América518<0.35<0.257.5-8.5<1.8ASTMB85-82
RússiaAlMg9<0.50<0.057.0-10.0<1.0DIN1725

6. Propriedades mecânicas das ligas de fundição da série Alumínio-Silício Tabela

(GB/T 1173-2013)

Grau da ligaCódigo da ligaMétodo de fundiçãoEstado da ligaResistência à tração Rm/MPaRácio de alongamento A/%Dureza Brinell HBW.
ZAlSi7MgZLl01S、R、J、KF155250
S、R、J、KT2135245
JBT4185450
S、R、KT4175450
J、JBT5205260
S、R、KT5195260
SB、RB、KBT5195260
SB、RB、KBT6225170
SB、RB、KBT7195260
SB、RB、KBT8155355
ZAlSi7MgAZL101AS、R、KT4195560
J、JBT4225560
S、R、KT5235470
SB、RB、KBT5235470
JB、JT52654 
SB、RB、KBT6275280
JB、JT6295380
ZAlSi12ZL102SB、JB、RB、KBF145450
JF155250
SB、JB、RB、KBT2135450
JT2145350
ZAlSi9MgZL104S、R、J、KF150250
JT1200 65
SB、RB、KBT1230270
J、JBT6240270
ZAlSi5Cu1MgZL105S、J、R、KT1155 65
S、R、KT5215170
JT5235 70
S、R、KT6225 70
S、J、R、KT7175165
ZAlSi5Cu1MgAZL105ASB、R、KT5275180
J、JBT5295280

7. Tabela de propriedades mecânicas da liga de alumínio fundido de outras séries

(GB/T 1173-2013)

Tipo de ligaGrau da ligaCódigo da ligaMétodo de fundiçãoEstado da ligaResistência à tração Rm/MPaRácio de alongamento A/%Dureza Brinell HBW.
Liga de Al-CuZAlCu5MgZL201S、J 、R、KT4295870
S、J 、R、KT5335490
ST7315280
ZAlCu5MgAZL201AS、J 、R、KT53908100
ZAlCul0ZL202S、JF104-50
S、JT6163-100
ZAlCu4ZL203S、R、KT4195660
JT4205660
S、R、KT5215370
JT5225370
ZAlCu5MnCdAZL204AST54404100
ZAlCu5MnCdVAZL205AST54407100
ST64703120
ST74602110
ZAlR5Cu3Si2ZL207ST1165-75
JT1175-75
Liga de Al-MgZAlMgl0ZL301S、J、RT4280960
ZAlMg5SiZL303S、J 、R、KF143155
ZAlMg8ZnlZL305ST4290890
Liga de Al-ZnZAlZn11Si7ZL401S、R、KT1195280
JT1245 90
ZAlZn6MgZL402JT1235470
ST1220465

V. Análise de defeitos

1. Inclusão de escória de oxidação

Características do defeito:

As inclusões de escória de oxidação estão maioritariamente distribuídas na superfície superior das peças fundidas, nos cantos onde o molde não é ventilado. A fratura é maioritariamente cinzenta-branca ou amarela, detectada através de inspeção por raios X ou durante a maquinagem, e pode também ser encontrada durante a lavagem alcalina, lavagem ácida ou anodização.

Causas:

  • Os materiais do forno não são limpos, utilização excessiva de materiais reciclados
  • Má conceção do sistema de fundição
  • A escória no líquido da liga não é completamente removida
  • Operação de fundição incorrecta, levando à inclusão de escória
  • Tempo de permanência insuficiente após o tratamento de afinação e modificação

2. Poros e bolhas

Características do defeito:

Os poros no interior da parede de fundição são geralmente redondos ou ovais, com uma superfície lisa, normalmente pele de óxido brilhante, por vezes amarelada como óleo. Os poros e bolhas superficiais podem ser encontrados através de jato de areia, e os poros e bolhas internos podem ser encontrados através de raios X ou maquinagem, aparecendo pretos na película de raios X.

Causas:

  • Fundição instável da liga, arrastamento de gás
  • Impurezas orgânicas misturadas na areia do molde (núcleo) (tais como pó de carvão, raízes de erva, estrume de cavalo, etc.)
  • Má ventilação no molde e no núcleo
  • Furos de retração na superfície do ferro frio
  • Má conceção do sistema de fundição

3. Porosidade de retração

Características do defeito:

A porosidade de retração em peças fundidas de alumínio ocorre geralmente perto da porta interior, na raiz do tubo de elevação onde a secção é mais espessa, na junção de paredes grossas e finas e em áreas com paredes grandes e finas. A superfície da fratura aparece cinzenta ou amarela clara no estado fundido e torna-se cinzenta clara, amarela clara ou cinzenta-preta após o tratamento térmico. Nas películas de raios X, aparece como uma forma de nuvem, e a porosidade de encolhimento grave pode ser detectada por métodos como raios X, exame de fratura fluorescente de baixa ampliação.

Causas:

  • Má alimentação do riser
  • Elevado teor de gás no material do forno
  • Sobreaquecimento junto ao portão interior
  • Humidade excessiva no molde de areia, núcleo de areia não seco
  • Grãos de liga grosseiros
  • Posicionamento incorreto da peça fundida no molde
  • Temperatura de vazamento demasiado elevada, velocidade de vazamento demasiado rápida

4. Rachadura

Características do defeito:

(1) Fissura de fundição

Desenvolve-se ao longo dos limites do grão, frequentemente acompanhada de segregação, é um tipo de fissura que se forma a temperaturas mais elevadas. Aparece geralmente em ligas com retração volumétrica significativa e em peças fundidas com formas mais complexas.

(2) Fissura por tratamento térmico

Causada por sobreaquecimento ou queima durante o tratamento térmico, apresentando-se frequentemente como fissuras transgranulares. Ocorre normalmente em ligas que geram tensões e têm um elevado coeficiente de expansão térmica durante um arrefecimento demasiado rápido, ou quando estão presentes outros defeitos metalúrgicos.

Causas:

  • Conceção pouco razoável da estrutura de fundição, com ângulos agudos e alterações demasiado drásticas da espessura das paredes
  • Fraca colapsabilidade do molde de areia (núcleo)
  • Sobreaquecimento local do molde
  • Temperatura de vazamento demasiado elevada
  • Retirar a peça fundida do molde demasiado cedo
  • Sobreaquecimento ou queima excessiva durante o tratamento térmico, arrefecimento demasiado rápido

5. Soluções

1. Ajustamento do equipamento

(1) Limpar a superfície de separação, limpar a cavidade do molde, limpar a haste ejectora; melhorar o revestimento, melhorar o processo de pulverização; aumentar a força de aperto, aumentar a quantidade de metal vazado. Estas medidas podem ser implementadas através de operações simples.

(2) Ajustar os parâmetros do processo, força de injeção, velocidade de injeção, tempo de enchimento, tempo de abertura do molde, temperatura de vazamento, temperatura do molde, etc.

(3) Alterar os materiais, escolher lingotes de liga de alumínio de alta qualidade, alterar a proporção de novos materiais para materiais reciclados, melhorar o processo de fusão.

(4) Modificação do molde, modificação do sistema de vazamento, adição de portas internas, adição de ranhuras de transbordo, ranhuras de exaustão, etc.

Por exemplo, as razões para a geração de flash em peças fundidas sob pressão incluem:

  • Problema na máquina de fundição injectada: Ajuste incorreto da força de aperto.
  • Problema no processo: Velocidade de injeção demasiado elevada, resultando em picos de pressão excessivamente elevados.
  • Problema do molde: Deformação, objectos estranhos na superfície de separação, desgaste irregular dos insertos e dos cursores, resistência insuficiente da placa do molde. Medidas para resolver o flash por ordem: Limpar a superfície de separação - Aumentar a força de aperto - Ajustar os parâmetros do processo - Reparar as peças gastas do molde - Aumentar a rigidez do molde. De fácil a difícil, após cada passo de melhoria, verifique primeiro o seu efeito, se não for satisfatório, avance para o passo seguinte.

2. A adição de elementos de terras raras às ligas de alumínio para fundição pode melhorar efetivamente os defeitos das ligas de alumínio para fundição.

(1) Papel de refinação das terras raras nas ligas de alumínio (os elementos de terras raras podem melhorar a morfologia das inclusões e purificar os limites dos grãos).

(2) Efeito de refinação das terras raras nas ligas de alumínio (inibição intencional do crescimento de cristais colunares e dendríticos para promover a formação de cristais equiaxiais finos, este processo é designado por tratamento de refinação do grão).

(3) Efeito de modificação de terras raras em ligas de alumínio-silício (Na fundição de ligas de Al-Si, a fase de Si irá transformar-se em fases frágeis em blocos ou em escamas em condições naturais, clivando gravemente a matriz, reduzindo a resistência e a plasticidade da liga, pelo que tem de ser alterada para uma forma favorável. O tratamento de modificação transforma o Si eutéctico de escamoso grosseiro em fibroso fino ou lamelar, melhorando assim o desempenho da liga.

Não se esqueçam, partilhar é cuidar! : )
Shane
Autor

Shane

Fundador do MachineMFG

Como fundador da MachineMFG, dediquei mais de uma década da minha carreira à indústria metalúrgica. A minha vasta experiência permitiu-me tornar-me um especialista nos domínios do fabrico de chapas metálicas, maquinagem, engenharia mecânica e máquinas-ferramentas para metais. Estou constantemente a pensar, a ler e a escrever sobre estes assuntos, esforçando-me constantemente por me manter na vanguarda da minha área. Deixe que os meus conhecimentos e experiência sejam uma mais-valia para a sua empresa.

Seguinte

Tabela de tamanhos e pesos de vigas H

Já alguma vez se interrogou sobre o mundo oculto das vigas de aço H? Neste artigo cativante, vamos desvendar os mistérios por detrás destes componentes de construção essenciais. O nosso perito em engenharia mecânica guiá-lo-á...
MáquinaMFG
Leve o seu negócio para o próximo nível
Subscrever a nossa newsletter
As últimas notícias, artigos e recursos, enviados semanalmente para a sua caixa de correio eletrónico.
© 2024. Todos os direitos reservados.

Contactar-nos

Receberá a nossa resposta no prazo de 24 horas.