Noções básicas sobre balanças de grelha linear: Tudo o que precisa de saber

Imagine desbloquear a precisão das máquinas-ferramentas com uma simples superfície de vidro. As escalas de grelha linear fazem exatamente isso, transformando linhas finas em medições altamente precisas. Este artigo explora o funcionamento destas escalas, desde a sua estrutura até às suas aplicações práticas. Irá descobrir como amplificam a deslocação e melhoram a precisão em várias tarefas de maquinação. No final, compreenderá porque é que estas ferramentas são essenciais para o fabrico moderno e como podem melhorar a precisão e a eficiência dos seus projectos.

Índice

Estrutura e princípio de funcionamento da grelha.

1. Estrutura da grelha

Grelha

Grelha - Muitas pequenas riscas (linhas gravadas) de igual distância e alternância de brilho e escuridão são uniformemente gravadas numa superfície de vidro revestido.

a - é a largura das linhas da grelha (não transparente)

b - é a largura do espaço entre as linhas da grelha (transparente)

a+b=W passo da grelha (também conhecido como constante da grelha)

Normalmente, a=b=W/2, mas também pode ser gravado como a:b=1,1:0,9.

As grelhas habitualmente utilizadas são gravadas com 10, 25, 50, 100 ou 250 linhas por milímetro.

2. Princípio de medição da grelha

Princípio de medição da grelha

Franjas de moiré - Quando duas grelhas de passo igual (Grelha 1 e Grelha 2) são sobrepostas face a face, deixando um pequeno espaço no meio, e o pequeno ângulo de grelha θ é formado entre as duas linhas de grelha, aparecem riscas claras e escuras alternadas na direção próxima da linha de grelha vertical.

Na linha d-d, as duas linhas da grelha sobrepõem-se e a área transparente é a maior, formando a banda brilhante da risca - constituída por uma série de padrões de losangos.

Na linha f-f, as duas linhas da grelha estão deslocadas, formando a banda escura da faixa - constituída por alguns padrões de linhas cruzadas pretas.

A medição do deslocamento da franja de Moire tem as três características seguintes:

(1) Efeito de amplificação da deslocação

Largura da banda BH - quando a grelha se move para a frente ou para trás num passo da grelha, as franjas de Moire movem-se para a frente ou para trás numa largura de banda.

A relação entre BH e θ:

À medida que θ diminui, BH aumenta. Por conseguinte, W é amplificado por 1/θ. Por exemplo, quando θ=0,1°, 1/θ=573, o que significa que BH é 573 vezes o passo da grelha W. Isto significa que a grelha tem um efeito de amplificação do deslocamento, aumentando assim a sensibilidade da medição.

(2) Direção do movimento da franja de moiré

Direção do movimento Moire Fringe

Quando a Grelha 1 se desloca para a direita ao longo da linha de corte na direção vertical, as franjas de Moiré deslocam-se para cima ao longo das linhas de grelha da Grelha 2. Por outro lado, quando a grelha 1 se desloca para a esquerda, as franjas de Moiré deslocam-se para baixo ao longo das linhas da grelha da grelha 2. Assim, a direção do movimento da Grelha 1 pode ser identificada como a direção do movimento das franjas de Moiré →.

(3) O efeito médio do erro

As franjas de Moiré são formadas pelo grande número de linhas gravadas numa grelha e têm um efeito contra-ativo sobre o erro de gravação das linhas. Este efeito pode reduzir significativamente a influência de erros de curto período.

As franjas de Moiré são formadas pelos efeitos de bloqueio e transmissão da luz entre duas grelhas.
As franjas de Moiré são formadas pelos efeitos de bloqueio e transmissão da luz entre duas grelhas.

Composição dos sensores de grelha

Composição dos sensores de grelha

Cabeça de leitura de grelha: Utiliza o princípio das grelhas para converter a quantidade de entrada (deslocamento) num sinal elétrico correspondente.

Componentes: Grelha de régua, grelha indicadora, sistema de percurso ótico, elementos fotoeléctricos, etc.

Ecrã digital de grelha: Para discernir a direção do deslocamento, aumentar a precisão da medição e permitir a visualização digital, o sinal de saída da cabeça de leitura da grelha deve ser convertido num sinal digital.

Componentes: Circuito de amplificação da forma, circuito de subdivisão, circuito de discriminação direcional e circuito de visualização digital, etc.

Estrutura da régua de grelha fechada

Estrutura da régua de grelha fechada

A régua de grelha é constituída por um corpo de escala fixo e uma cabeça de leitura móvel.

O corpo da balança fixa é um invólucro de alumínio concebido para proteger a régua, a unidade de leitura e as calhas de guia no interior contra danos causados por lascas, pó ou salpicos de água.

A cabeça de leitura móvel é constituída por uma unidade de leitura, um conetor de precisão e um bloco de instalação. O conetor de precisão liga a unidade de leitura ao bloco de instalação, que compensa pequenos erros mecânicos nas calhas de guia.

Função e vantagens da régua de grelha

A régua de grelha linear é utilizada para medir a posição do movimento do eixo linear. Como mede diretamente a posição mecânica, pode refletir com precisão a posição real da máquina-ferramenta.

Função e vantagens da régua de grelha

Ao utilizar a régua de grelha linear para medir a posição da corrediça, o circuito de controlo da posição inclui todos os mecanismos de alimentação. Este é o modo de controlo em circuito fechado. O erro de movimento mecânico é detectado pela régua de grelha linear na placa deslizante e corrigido pelo circuito do sistema de controlo.

Por conseguinte, pode eliminar potenciais erros de várias fontes:

  • Erro de posicionamento causado pelas características de temperatura do fuso de esferas e das calhas de guia
  • Erro de inversão do fuso de esferas
  • Erro caraterístico do movimento causado pelo erro de passo do fuso de esferas

Aplicações das réguas de grelha

Equipamento de processamento: tornos, fresadoras, mandriladoras e rectificadoras, perfuração máquinas, máquinas EDM, corte por fio, centros de maquinagem, etc.

Instrumentos de medição: projectores, instrumentos de medição de imagem, microscópios de ferramentas, etc.

Também pode compensar erros de movimento da ferramenta em Máquina CNC ferramentas

Equipado com PLC para medição de deslocamentos em diversos mecanismos automatizados.

Princípio de medição da régua de grelha

Régua de grelha incremental

O princípio de medição da régua de grelha incremental consiste em modular a luz através de duas grelhas que se movem mutuamente em franjas de Moiré. Através da contagem e da subdivisão das franjas de Moiré, obtém-se a alteração do deslocamento. A posição absoluta é determinada pela fixação de um ou mais pontos de referência na grelha graduada.

Princípio de medição da régua de grelha

Características:

A régua de grelha tem vantagens como uma estrutura simples, longa vida útil mecânica, alta fiabilidade, forte capacidade anti-interferência, longa distância de transmissão, alta precisão e baixo custo.

No entanto, os sensores de grelha incremental também apresentam deficiências. As réguas de grelha incrementais só podem emitir a posição relativa da rotação do eixo.

O ponto de referência deve ser definido sempre que a alimentação é desligada ou reiniciada, e existe algum erro de subdivisão no método de processamento do sinal.

Régua de grelha absoluta

O princípio de medição da régua de grelha absoluta consiste em codificar diretamente os dados da posição absoluta sob a forma de códigos na grelha, fazendo cintilar as linhas da grelha com diferentes larguras e espaçamentos na régua de grelha.

O equipamento eletrónico subsequente pode obter informações sobre a posição enquanto a régua de grelha estiver ligada.

Régua de grelha absoluta

Vantagens:

A informação sobre a posição atual pode ser obtida diretamente após a ligação, sem necessidade de uma operação de "colocação em zero", simplificando a conceção do sistema de controlo. O cálculo da posição absoluta é efectuado na cabeça de leitura sem necessidade de circuitos de subdivisão subsequentes. A utilização da tecnologia de comunicação em série bidirecional assegura uma comunicação fiável.

Tipos de pontos de referência

A posição absoluta da régua de grelha é determinada por meio de marcadores de referência (posições zero).

Para encurtar a distância de regresso à posição zero, a Heidenhain concebeu marcadores de referência com código de distância dentro do comprimento de medição.

A posição absoluta da régua de grelha pode ser determinada de cada vez que dois marcadores de referência (com uma distância determinada por algoritmos matemáticos) são passados.

Os codificadores com pontos de referência codificados por distância têm a letra "C" após o número do modelo (por exemplo, LS 487C).

Ponto de referência único

Ponto de referência único

Pontos de referência equidistantes.

Pontos de referência equidistantes

Ponto de referência codificado em termos de distância/tipo C.

Ponto de referência codificado em termos de distância/tipo
 Ciclo de sinaisnúmero do incremento nominaldistância máxima de deslocação
LF4μm500020 mm
LS20μm100020 mm
LB40μm200080 mm

Escala linear absoluta não referenciada

Escala linear absoluta não referenciada

Classificação de sinais de escalas lineares

Sinal absoluto: Endat, Fanuc serial, Siemens, Mitsubishi, Panasonic, etc.

Sinal incremental: Sinal de onda sinusoidal (sinal de 1 Vpp), sinal de onda quadrada (sinal TTL).

Classificação de sinais de escalas lineares

Especificações técnicas das balanças lineares

1. Passo da grelha:

A escala linear emite sinais eléctricos e o passo da grelha refere-se às linhas físicas da grelha na escala linear. Sempre que a escala linear se move uma distância igual ao passo da grelha, o sinal elétrico de saída muda um ciclo.

Exemplo: Quando o passo da grelha é de 20um, se a escala linear se deslocar uma distância de 20um, a escala linear produzirá uma onda sinusoidal com um desvio de fase de 360° e uma diferença de duas fases de 90°.

2. Ciclo de sinais:

Com o desenvolvimento da tecnologia de medição, é agora possível utilizar circuitos de multiplicação de frequências na cabeça de leitura da escala linear para multiplicar a onda sinusoidal gerada por cada sinal de linha de grelha.

Por conseguinte, o ciclo de saída do sinal da escala linear pode ser refinado. O sinal após ser multiplicado pela cabeça de leitura é muito mais denso do que o sinal original da linha de grelha, e o comprimento do sinal densificado é chamado de ciclo de sinal.

Se a cabeça de leitura não tiver capacidade de multiplicação de frequências, então o passo da grelha é igual ao ciclo do sinal.

3. Multiplicação de frequências:

A multiplicação de frequências pode ser entendida como a densificação do sinal original. A multiplicação de frequências pode encurtar o período de uma onda sinusoidal, encurtar a distância medida correspondente a cada período e melhorar a precisão da medição.

Os métodos comuns de multiplicação da frequência incluem: multiplicação da frequência da cabeça de leitura, instrumentos de pós-multiplicação (fornecidos pelos fabricantes de balanças lineares, semelhantes a pré-amplificadores, utilizados para amplificação do sinal e multiplicação da frequência), multiplicação da frequência de Sistemas CNC, etc.

4. Etapa de medição:

Os sinais de onda sinusoidal que passaram pela multiplicação de frequência são utilizados para medir a posição. Devido a limitações no processo de fabrico, no nível de erro e na capacidade de processamento do circuito de registo de posição da escala linear, é impossível multiplicar infinitamente o sinal original de inclinação da grelha.

Por isso, os fabricantes de balanças lineares têm um passo de medição recomendado para cada tipo de balança linear. Este valor refere-se à distância mínima de medição que a balança linear pode tolerar. Dentro deste intervalo de passos de medição, a precisão nominal de medição da balança linear pode ser alcançada.

Em comparação com os sistemas CNC, este passo de medição é normalmente a unidade de instrução mínima do sistema. Da mesma forma, esta especificação técnica também especifica a exatidão de medição (resolução) da escala linear.

5. Resolução:

A precisão da medição refere-se à alteração mínima do comprimento que a escala linear pode ler e produzir, como 5um, 1um, 0,5um, 0,1um.

6. Precisão da medição:

A precisão da medição refere-se à precisão dos dados do sinal emitido pela escala linear para o comprimento real que está a ser medido.

Erro de posição em toda a gama de medição: Se o valor máximo do erro de posição estabelecido com base no valor médio dentro de qualquer intervalo de medição de 1 m de comprimento se situar dentro de ±a, então ±a um é o nível de exatidão.

Nas escalas lineares fechadas, estes dados reflectem a precisão da escala linear, incluindo a cabeça de leitura, ou seja, a precisão do sistema. (Heidenhain: ±0,1, ±0,2, ±0,5, ±1, ±2, ±3, ±5, ±10, ±15um)

Erro de posição num único ciclo de sinal:

O desvio de posição num único ciclo de sinal é determinado pela qualidade da grelha, pela qualidade do varrimento e pelo ciclo de sinal da escala linear. O erro de posição num único ciclo de sinal situa-se geralmente entre ±2% e ±0,5% do ciclo de sinal.

Quanto mais pequeno for o ciclo do sinal, menor será o erro num único ciclo de sinal. Isto é muito importante para a precisão do posicionamento durante o movimento lento e o movimento do eixo e para o controlo da velocidade durante o movimento do eixo, o que determina a qualidade da superfície e a qualidade das peças processadas.

 O ciclo de sinal do sinal de varrimentoO erro máximo de interpolação num ciclo de sinal único
F L4μm0,08 μm
LC18116μm0,3μm
LC48120 μm0,4μm
LS20 μm04 μm
LB40 μm0,8μm

Factores a considerar na seleção de uma balança linear

  • Comprimento de medição.
  • Interface de sinal: 1Vpp, TTL, HTL, escala linear absoluta.
  • Passo da grelha.
  • Velocidade de medição.
  • Nível de exatidão e resolução.
  • Espaço para a posição de instalação.
  • Método de estabelecimento de pontos de referência.
Não se esqueçam, partilhar é cuidar! : )
Shane
Autor

Shane

Fundador do MachineMFG

Como fundador da MachineMFG, dediquei mais de uma década da minha carreira à indústria metalúrgica. A minha vasta experiência permitiu-me tornar-me um especialista nos domínios do fabrico de chapas metálicas, maquinagem, engenharia mecânica e máquinas-ferramentas para metais. Estou constantemente a pensar, a ler e a escrever sobre estes assuntos, esforçando-me constantemente por me manter na vanguarda da minha área. Deixe que os meus conhecimentos e experiência sejam uma mais-valia para a sua empresa.

Seguinte

Dureza HRC vs HB: Diferenças e conversão

Já alguma vez se interrogou sobre a diferença entre as escalas de dureza Rockwell e Brinell? Neste artigo, vamos mergulhar no mundo dos testes de dureza de materiais, explorando as principais distinções entre...

Tabela de tamanhos e pesos de vigas H

Já alguma vez se interrogou sobre o mundo oculto das vigas de aço H? Neste artigo cativante, vamos desvendar os mistérios por detrás destes componentes de construção essenciais. O nosso perito em engenharia mecânica guiá-lo-á...
MáquinaMFG
Leve o seu negócio para o próximo nível
Subscrever a nossa newsletter
As últimas notícias, artigos e recursos, enviados semanalmente para a sua caixa de correio eletrónico.
© 2024. Todos os direitos reservados.

Contactar-nos

Receberá a nossa resposta no prazo de 24 horas.