Você já se perguntou como as peças de chapa metálica são projetadas e fabricadas com precisão? Nesta postagem do blog, vamos nos aprofundar no fascinante mundo da tolerância de dobra - um conceito crucial na fabricação de chapas metálicas. Como engenheiro mecânico experiente, compartilharei minhas percepções e explicarei como a tolerância de dobra permite que os projetistas criem padrões planos precisos para operações de dobra. Ao final deste artigo, você terá uma sólida compreensão da tolerância de dobra e de sua importância na produção de componentes de chapa metálica de alta qualidade.
A tolerância de dobra é um conceito crítico na fabricação de chapas metálicas, especialmente no projeto e na fabricação de peças dobradas por pressão. Ele se refere ao comprimento adicional de material necessário para acomodar uma dobra na chapa metálica. Essa tolerância garante que as dimensões finais da peça dobrada correspondam às especificações do projeto após a dobra.
A tolerância de dobra não é apenas um dado estatístico; ela é derivada de medições empíricas e cálculos acumulados por projetistas de moldes experientes ao longo de anos de prática. Esses dados são essenciais para determinar com precisão as dimensões desdobradas ou planas das peças de chapa metálica antes da dobra. Ao incorporar a tolerância de dobra em seus cálculos, os projetistas de moldes podem prever as dimensões finais de uma peça com alta precisão.
Um dos maiores desafios na fabricação de chapas metálicas é garantir a precisão das dimensões desdobradas após a dobra. Isso envolve a contabilização de vários fatores, como tipo de material, espessura, raio de curvatura e ângulo de curvatura. Cálculos precisos de tolerância de dobra são essenciais para evitar discrepâncias entre as peças projetadas e fabricadas.
A tolerância de dobra é uma ferramenta fundamental para os projetistas de moldes no setor de chapas metálicas. Ela permite o cálculo preciso das dimensões de desdobramento das peças dobradas por prensa, garantindo que o produto final atenda às especificações do projeto e aos padrões de qualidade. Ao compreender e aplicar corretamente a tolerância de dobra, os projetistas podem superar os desafios associados à dobra e obter alta precisão em seu trabalho.
Depois de aprender sobre a tolerância de dobra, a próxima etapa é calculá-la. A tolerância de dobra é um fator crítico na fabricação de chapas metálicas, pois determina a quantidade de material necessária para acomodar uma dobra. Isso garante que as dimensões finais da peça sejam precisas após a dobra.
Uma das maneiras mais fáceis de calcular a tolerância de dobra é usar um Calculadora de subsídio de dobra. Essas calculadoras são projetadas para calcular de forma rápida e precisa a tolerância de dobra com base nos parâmetros de entrada, como tipo de material, espessura, ângulo de dobra e raio de dobra.
Além de uma calculadora de tolerância de dobra dedicada, a calculadora acima também pode ajudar a calcular vários parâmetros relacionados à dobra de chapas metálicas, inclusive:
Para os interessados em entender melhor como calcular a tolerância de dobra manualmente, temos uma análise detalhada disponível em uma de nossas postagens no blog. Essa postagem aborda o Método passo a passo para calcular a tolerância de dobraincluindo as fórmulas e os fatores envolvidos.
Material | Espessura | Dedução | Interior R | Ângulo | Morrer | Soco | ||
---|---|---|---|---|---|---|---|---|
R | V Largura | R | Ângulo | |||||
Chapa de aço | 0.8 | 1.5 | 1.3 | 90° | 0.5 | 8 | 0.2 | 88° |
0.9 | 1.7 | 1.3 | 90° | 0.5 | 6 | 0.2 | 88° | |
1 | 1.8 | 1.3 | 90° | 0.5 | 8 | 0.2 | 88° | |
1.2 | 1.91 | 1 | 90° | 0.4 | 6 | 0.2 | 88° | |
1.2 | 2.1 | 1.3 | 90° | 0.5 | 8 | 0.2 | 88° | |
1.5 | 2.5 | 1.3 | 90° | 0.5 | 8 | 0.2 | 88° | |
Laminados a frio Placa | 1.6 | 2.65 | 1.3 | 90° | 0.5 | 8 | 0.6 | 88° |
1.8 | 3.4 | 2 | 90° | 0.8 | 12 | 0.6 | 88° | |
2 | 3.5 | 2 | 90° | 0.8 | 12 | 0.6 | 88° | |
2.3 | 3.75 | 2 | 90° | 0.8 | 12 | 0.6 | 88° | |
2.5 | 4.2 | 2.6 | 90° | 0.8 | 16 | 0.6 | 88° | |
3 | 5.05 | 2.6 | 90° | 0.8 | 16 | 0.6 | 88° | |
4 | 6.9 | 4 | 90° | 0.8 | 25 | 0.6 | 88° | |
Laminado a quente Placa | 2.3 | 3.77 | 2.6 | 90° | 0.8 | 16 | 0.6 | 88° |
3.2 | 5.2 | 2.6 | 90° | 0.8 | 16 | 0.6 | 88° | |
4.2 | 7.4 | 4 | 90° | 0.8 | 25 | 0.6 | 88° | |
4.8 | 8.1 | 4 | 90° | 0.8 | 25 | 0.6 | 88° | |
Placa de alumínio | 0.8 | 1.5 | 1.3 | 90° | 0.5 | 6 | 0.2 | 88° |
1 | 1.6 | 1.3 | 90° | 0.5 | 8 | 0.2 | 88° | |
1.2 | 2.1 | 1.3 | 90° | 0.5 | 8 | 0.2 | 88° | |
1.5 | 2.45 | 1.3 | 90° | 0.5 | 8 | 0.2 | 88° | |
1.6 | 2.7 | 1.3 | 90° | 0.5 | 8 | 0.6 | 88° | |
1.6 | 2.4 | 1.3 | 90° | 0.6 | 10 | 0.6 | 88° | |
2 | 3.25 | 2 | 90° | 0.8 | 12 | 0.6 | 88° | |
2.3 | 3.6 | 2.6 | 90° | 0.8 | 16 | 0.6 | 88° | |
2.5 | 4.2 | 2.6 | 90° | 0.5 | 16 | 0.6 | 88° | |
3 | 4.7 | 2.6 | 90° | 0.8 | 16 | 0.6 | 88° | |
3.2 | 5 | 2.6 | 90° | 0.8 | 16 | 0.6 | 88° | |
3.5 | 5.9 | 4 | 90° | 0.8 | 25 | 1.5 | 88° | |
4 | 6.8 | 4 | 90° | 0.8 | 25 | 1.5 | 88° | |
5 | 8.1 | 4 | 90° | 0.8 | 25 | 3.2 | 88° | |
Placa de cobre | 0.8 | 1.6 | 1.3 | 90° | 0.5 | 6 | 0.2 | 88° |
1 | 1.9 | 1.3 | 90° | 0.5 | 8 | 0.2 | 88° | |
1.2 | 2.15 | 1.3 | 90° | 0.5 | 8 | 0.2 | 88° | |
1.5 | 2.55 | 1.3 | 90° | 0.5 | 8 | 0.2 | 88° | |
2 | 3.5 | 2 | 90° | 0.8 | 12 | 0.6 | 88° | |
2.5 | 4.2 | 2.6 | 90° | 0.8 | 16 | 0.6 | 88° | |
3 | 5 | 2.6 | 90° | 0.8 | 16 | 0.6 | 88° | |
3.2 | 5.1 | 2.6 | 90° | 0.8 | 16 | 0.6 | 88° | |
3.5 | 6 | 4 | 90° | 0.8 | 25 | 1.5 | 88° | |
4 | 7 | 4 | 90° | 0.8 | 25 | 1.5 | 88° |
T | Chapa de aço laminada a frio SPCC (chapa eletrogalvanizada SECC) | ||||||||||||||
V | Ângulo | 0.6 | 0.8 | 1 | 1.2 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | Dimensão mínima | Observação |
V4 | 90 | 0.9 | 1.4 | 2.8 | |||||||||||
120 | 0.7 | ||||||||||||||
150 | 0.2 | ||||||||||||||
V6 | 90 | 1.5 | 1.7 | 2.15 | 4.5 | ||||||||||
120 | 0.7 | 0.86 | 1 | ||||||||||||
150 | 0.2 | 0.3 | 0.4 | ||||||||||||
V7 | 90 | 1.6 | 1.8 | 2.1 | 2.4 | 5 | |||||||||
120 | 0.8 | 0.9 | 1 | ||||||||||||
150 | 0.3 | 0.3 | 0.3 | ||||||||||||
V8 | 90 | 1.6 | 1.9 | 2.2 | 2.5 | 5.5 | |||||||||
30 | 0.3 | 0.34 | 0.4 | 0.5 | |||||||||||
45 | 0.6 | 0.7 | 0.8 | 1 | |||||||||||
60 | 1 | 1.1 | 1.3 | 1.5 | |||||||||||
120 | 0.8 | 0.9 | 1.1 | 1.3 | |||||||||||
150 | 0.3 | 0.3 | 0.2 | 0.5 | |||||||||||
V10 | 90 | 2.7 | 3.2 | 7 | |||||||||||
120 | 1.3 | 1.6 | |||||||||||||
150 | 0.5 | 0.5 | |||||||||||||
V12 | 90 | 2.8 | 3.65 | 4.5 | 8.5 | ||||||||||
30 | 0.5 | 0.6 | 0.7 | ||||||||||||
45 | 1,0 | 1.3 | 1.5 | ||||||||||||
60 | 1.7 | 2 | 2.4 | ||||||||||||
120 | 1.4 | 1.7 | 2 | ||||||||||||
150 | 0.5 | 0.6 | 0.7 | ||||||||||||
V14 | 90 | 4.3 | 10 | ||||||||||||
120 | 2.1 | ||||||||||||||
150 | 0.7 | ||||||||||||||
V16 | 90 | 4.5 | 5 | 11 | |||||||||||
120 | 2.2 | ||||||||||||||
150 | 0.8 | ||||||||||||||
V18 | 90 | 4.6 | 13 | ||||||||||||
120 | 2.3 | ||||||||||||||
150 | 0.8 | ||||||||||||||
V20 | 90 | 4.8 | 5.1 | 6.6 | 14 | ||||||||||
120 | 2.3 | 3.3 | |||||||||||||
150 | 0.8 | 1.1 | |||||||||||||
V25 | 90 | 5.7 | 6.4 | 7 | 17.5 | ||||||||||
120 | 2.8 | 3.1 | 3.4 | ||||||||||||
150 | 1 | 1 | 1.2 | ||||||||||||
V32 | 90 | 7.5 | 8.2 | 22 | |||||||||||
120 | 4 | ||||||||||||||
150 | 1.4 | ||||||||||||||
V40 | 90 | 8.7 | 9.4 | 28 | |||||||||||
120 | 4.3 | 4.6 | |||||||||||||
150 | 1.5 | 1.6 |
T | Material da chapa de alumínio L2Y2 | ||||||||||||||
V | Ângulo | 0.6 | 0.8 | 1 | 1.2 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | Dimensão mínima | Observação |
V4 | 1.4 | 2.8 | |||||||||||||
V6 | 1.6 | 4.5 | |||||||||||||
V7 | 1.6 | 1.8 | 5 | ||||||||||||
V8 | 1.8 | 2.4 | 3.1 | 5.5 | |||||||||||
V10 | 2.4 | 3.2 | 7 | ||||||||||||
V12 | 2.4 | 3.2 | 8.5 | ||||||||||||
V14 | 3.2 | 10 | |||||||||||||
V16 | 3.2 | 4 | 4.8 | 11 | |||||||||||
V18 | 4.8 | 13 | |||||||||||||
V20 | 4.8 | 14 | |||||||||||||
V25 | 4.8 | 5.4 | 6 | 17.5 | |||||||||||
V32 | 6.3 | 6.9 | 22 |
T | Folha de cobre | ||||||||||||||
V | Ângulo | 0.6 | 0.8 | 1 | 1.2 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | Dimensão mínima | Observação |
90 | 3.6 | 5.2 | 6.8 | 8.4 | 28 | ||||||||||
120 | |||||||||||||||
150 |
Observação: (Para perfis em forma de C com espessura de 2,0, o coeficiente V12 é 3,65, enquanto outros materiais de chapa 2,0 têm um coeficiente de 3,5). O coeficiente de tolerância à flexão para chapas 2.0 com bainha é de 1,4.
MATERLAL | SPCC | SUS | LY12 | CCEE | ||||
T | ΔT | ΔK | ΔT | ΔK | ΔT | ΔK | ΔT | ΔK |
T=0.6 | 1.25 | 1.26 | ||||||
T=0.8 | 0.18 | 1.42 | 0.15 | 1.45 | 0.09 | 1.51 | ||
T=1.0 | 0.25 | 1.75 | 0.2 | 1.8 | 0.3 | 1.7 | 0.38 | 1.62 |
T=1.2 | 0.45 | 1.95 | 0.25 | 2.15 | 0.5 | 1.9 | 0.43 | 1.97 |
T=1.4 | 0.64 | 2.16 | ||||||
T=1.5 | 0.64 | 2.36 | 0.5 | 2.5 | 0.7 | 2.3 | ||
T=1.6 | 0.69 | 2.51 | ||||||
T=1.8 | 0.65 | 3 | ||||||
T=1.9 | 0.6 | 3.2 | ||||||
T=2.0 | 0.65 | 3.35 | 0.5 | 3.5 | 0.97 | 3.03 | 0.81 | 3.19 |
T=2.5 | 0.8 | 4.2 | 0.85 | 4.15 | 1.38 | 3.62 | ||
T=3.0 | 1 | 5 | 5.2 | 1.4 | 4.6 | |||
T=3.2 | 1.29 | 5.11 | ||||||
T=4.0 | 1.2 | 6.8 | 1 | 7 | ||||
T=5.0 | 2.2 | 7.8 | 2.2 | 7.8 | ||||
T=6.0 | 2.2 | 9.8 |
Espessura da chapa de alumínio | Ângulo de flexão | Tolerância de dobra |
AL-0.8 | 90 | 1.5 |
AL-1.0 | 90 | 1.5 |
45, 135 | 0.5 | |
AL-1.2 | 90 | 2.0 |
45, 135 | 0.5 | |
AL-1.5 | 90 | 2.5 |
45, 135 | 0.5 | |
60, 120 | 1.5 | |
AL-2.0 | 90 | 3.0 |
45, 135 | 1.0 | |
60, 120 | 2.5 | |
Ranhura de 90 graus | 1.5 | |
AL-2.5 | 90 | 4.0 |
45, 135 | 1.5 | |
60, 120 | 3.0 | |
Ranhura de 90 graus | 2.0 | |
AL-3.0 | 90 | 5.0 |
45, 135 | 3.0 | |
60, 120 | 4.5 | |
Ranhura de 90 graus | 2.5 |
1) A tabela de tolerância de dobra é aplicável a processos de dobra de chapas metálicas em que não se usa placa de pressão e a largura da placa é maior que três vezes a espessura.
2) Ao se dobrar em um máquina de freio de prensaSe você não tiver uma conta, os cálculos podem ser feitos de acordo com essa tabela.
3) De acordo com as dimensões marcadas no diagrama, a fórmula de cálculo para as dimensões desdobradas da peça de trabalho dobrada é a seguinte:
L = a + b + x
Nessa equação,
4) Devido aos inúmeros fatores que afetam a dobra de chapas metálicas, essa tabela de tolerância de dobra para dobra de chapas metálicas deve ser usada apenas como referência.
Formação de dobras 0°L=A+B-0,43T, T=Espessura, Dedução=0,43T
Fórmula: L(comprimento desdobrado)=A(tamanho externo)+B(tamanho externo)-K(fator K)
O desdobramento da dobra não 90° de acordo com a camada neutra, a distância do lado neutro ao lado interno da folha é T/3, o R interno pode se referir ao gráfico acima.
A largura da matriz em V é de 6 a 8 vezes a espessura da placa
Curva não 90° = 180°- Ângulo/90°*Dedução
A dedução é 1,8 vezes maior que o espessura da chapa de aço e 1,6 vezes a placa de alumínio.
Para placas com menos de 2 mm, o fator K é de 0,432, R=espessura da placa, o tamanho do desdobramento pode ser preciso até 0,05.
Em geral, ao projetar o chapa metálica partes, o R interno mínimo = espessura/2; se for menor que isso, o grooving (V-cutting) será necessário para resolver o problema.
Leia mais: